
Using Guide (Printable)
The information presented here is also available in individual pages in the section. This page is designed to enable you to easily export theUsing
information to a PDF or Word document.

To print a version of this document, log in to wikis.sun.com, click Tools, then select Export to PDF or Export to Word.

Contents

 Using Sun Grid Engine

 Interacting With Sun Grid Engine as a User

 Displaying User Properties

 How to Display A List of Managers From the Command Line

 How to Display a List of Managers With QMON

 How to Display A List of Operators From the Command Line

 How to Display a List of Operators With QMON

 How to Display a List of Owners From the Command Line

 How to Display a List of Owners With QMON

 How to Display User Access Lists From the Command Line

 How to Display User Access Lists With QMON

 How to Display a List of Defined Projects From the Command Line

 How to Display a List of Defined Projects With QMON

 Displaying Host Properties

 How to Display the Name of the Master Host From the Command LIne

 How to Display a List of Execution Hosts From the Command Line

 How to Display a List of Administration Host From the Command Line

 How to Display a List of Submit Hosts From the Command Line

 Displaying Queue Properties

http://wikis.sun.com/display/gridengine62u5/Using

 How to Display a List of Queues From the Command Line

 How to Display a List of Queues With QMON

 How to Display Queue Properties From the Command Line

 How to Display Queue Properties With QMON

 Submitting Jobs

 How Jobs Are Scheduled

 Defining Resource Requirements

 Requestable Attributes

 How to Display Requestable Attributes From the Command Line

 How to Display Requestable Attributes With QMON

 Submitting Batch Jobs

 Submitting Array Jobs

 How to Configure Array Task Dependencies From the Command Line

 How to Submit an Array Job From the Command Line

 How to Submit an Array Job With QMON

 Submitting Interactive Jobs

 How to Submit Interactive Jobs From the Command Line

 How to Submit Interactive Jobs With QMON

 Transparent Remote Execution

 How to Submit a Simple Job From the Command Line

 How to Submit a Simple Job With QMON

 How to Submit an Extended Job From the Command Line

 How to Submit an Extended Job With QMON

 How to Submit an Advanced Job From the Command Line

 How to Submit an Advanced Job With QMON

 Monitoring Hosts

 How to Monitor Hosts From the Command Line

 How to Monitor Hosts With QMON

 Monitoring and Controlling Jobs

 How to Monitor Jobs From the Command Line

 How to Monitor Jobs With QMON

 How to Monitor Jobs by Email

 How to Monitor Jobs by Email With QMON

 How to Control Jobs From the Command Line

 How to Control Jobs With QMON

 Monitoring and Controlling Queues

 How to Monitor Queues With QMON

 How to Control Queues From the Command Line

 Automating Grid Engine Functions Through DRMAA

 Developing With the C Language Binding

 Developing With the Java Language Binding

 Using Sun Grid Engine

 Using Guide (Printable)

This section focuses on using Sun Grid Engine to perform tasks that distribute workload across your grid systems:

Topic Description

Interacting With Sun
Grid Engine as a User

Learn how you can use the command line interface, the graphical user interface (QMON), and the Distributed
Resource Management Application API (DRMAA) to interact with the Sun Grid Engine system.

Displaying User
Properties

Learn how to display user properties.

Displaying Host
Properties

Learn how to display host properties.

http://wikis.sun.com/display/gridengine62u5/Interacting+With+Sun+Grid+Engine+as+a+User
http://wikis.sun.com/display/gridengine62u5/Interacting+With+Sun+Grid+Engine+as+a+User
http://wikis.sun.com/display/gridengine62u5/Displaying+User+Properties
http://wikis.sun.com/display/gridengine62u5/Displaying+User+Properties
http://wikis.sun.com/display/gridengine62u5/Displaying+Host+Properties
http://wikis.sun.com/display/gridengine62u5/Displaying+Host+Properties

Displaying Queue
Properties

Learn how to display queue properties.

Submitting Jobs Learn how to submit jobs.

Monitoring Hosts Learn how to monitor and control hosts.

Monitoring and
Controlling Jobs

Learn how to monitor and control jobs.

Monitoring and
Controlling Queues

Learn how to monitor and control queues.

Using Job
Checkpointing

Learn how to use job checkpointing as another method for monitoring jobs.

Using Job to Core
Binding

Learn how to bind jobs to processor cores on the execution host.

Starting ARCo Learn how to gather and view information about how effectively your workload distribution uses resources.

 To print this section, see the .Using Guide (Printable)

 Interacting With Sun Grid Engine as a User
Launching QMON From the Command Line
Customizing QMON
Using the Command-Line Interface

Launching QMON From the Command Line

To , type the following command:launch QMON from the command line

qmon

Customizing QMON

A specifically designed resource file largely defines the QMON look and feel. Reasonable defaults are compiled in ./qmon/Qmon$SGE_ROOT

This file also includes a sample resource file. Refer to the comment lines in the sample file for detailed information on the possibleQmon

customizations.

Users can configure the following personal preferences:

Users can modify the file.Qmon

The file can be moved to the home directory or to another location pointed to by the private search path.Qmon XAPPLRESDIR

Users can include the necessary resource definitions in their private or files..Xdefaults .Xresources

A private resource file can also be installed using the command. The command can be used during operation. Qmon xrdb xrdb xrdb

can also be used at startup of the X11 environment, for example, in a resource file..xinitrc

You can also use the Job Customize and Queue Customize dialog boxes to customize QMON. These dialog boxes are shown in Customizing the
 and in . In both dialog boxes, users can use the Save button to store theJob Control Display Filtering Cluster Queues and Queue Instances

filtering and display definitions to the file in their home directories. When QMON is restarted, this file is read, and.qmon_preferences

QMON reactivates the previously defined behavior.

For information on what your administrator can configure, see .Interacting With Sun Grid Engine as an Administrator

Using the Command-Line Interface

http://wikis.sun.com/display/gridengine62u5/Displaying+Queue+Properties
http://wikis.sun.com/display/gridengine62u5/Displaying+Queue+Properties
http://wikis.sun.com/display/gridengine62u5/Submitting+Jobs
http://wikis.sun.com/display/gridengine62u5/Monitoring+Hosts
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Queues
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Queues
http://wikis.sun.com/display/gridengine62u5/Using+Job+Checkpointing
http://wikis.sun.com/display/gridengine62u5/Using+Job+Checkpointing
http://wikis.sun.com/display/gridengine62u5/Using+Job+to+Core+Binding
http://wikis.sun.com/display/gridengine62u5/Using+Job+to+Core+Binding
http://wikis.sun.com/display/gridengine62u5/How+to+Start+ARCo
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-indexterm464
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-indexterm464
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-eqxnz
http://wikis.sun.com/display/gridengine62u5/Interacting+With+Sun+Grid+Engine+as+an+Administrator

As a user, you will find the following commands particularly useful:

qalter – Modify a pending batch job.
qdel – Delete a queue.
qhost – Show the status of hosts, queues, and jobs.
qlogin – Submit an interactive login session.
qrsh – Submit an interactive session.rsh

qsub – Submit Jobs
qstat – Check the status of a job queue.
qtcsh – Used as interactive command interpreter as well as for the processing of shell scripts.tcsh

For a complete list of ancillary programs, see . For more information, see the .Command Line Interface Ancillary Programs man pages

 Displaying User Properties
User Access Permissions
Displaying User Access Permissions
Displaying Managers, Operators, and Owners

For information on the different categories of Sun Grid Engine users, see .Users and User Categories

User Access Permissions

Note
The Grid Engine software automatically takes into account the access restrictions configured by the cluster administration. The
following sections are important only if you want to query your personal access permission.

The administrator can restrict access to queues and other facilities, such as parallel environment interfaces. Access can also be restricted to
certain users or user groups. For more information on how administrators configure , see .access lists How to Configure User Access Lists

Users who belong to ACLs that are listed in access-allowed-lists have permission to access the queue or the parallel environment interface. Users
who are members of ACLs in access-denied-lists cannot access the resource in question.

ACLs are also used to define , to which assigned users can submit their jobs. The administrator can also restrict access to clusterprojects
resources on a per project basis. For more on projects, see .Configuring Projects

The User Configuration dialog box opens when you click the User Configuration button in the QMON Main Control window. This dialog box
enables you to query for the ACLs to which you have access. For details, see .Managing User Access

You can display project access by clicking the Project Configuration icon in the QMON Main Control window. Details are described in
.Configuring Projects

The ACLs consist of user account names and UNIX group names. The UNIX group names are identified by a prefixed sign. In this way, you can@

determine which ACLs your account belongs to.

Note
If you have permission to switch your primary UNIX group with the command, your access permissions mightnewgrp

change. For details, see the man page.newgrp(1)

You can check for those queues or parallel environment interfaces to which you have access or to which your access is denied. Query the queue
or parallel environment interface configuration, as described in and Displaying Queue Properties How to Configure Parallel Environments With

.QMON

The access-allowed-lists are named . The access-denied-lists are named . If your user account or primary UNIXuser_lists xuser_lists

group is associated with an access-allowed-list, you are allowed to access the resource in question. If you are associated with an
access-denied-list, you cannot access the queue or parallel environment interface. If both lists are empty, every user with a valid account can
access the resource in question.

If you have access to a project, you are allowed to submit jobs that are subordinated to the project. You can submit such jobs from the

http://wikis.sun.com/display/gridengine62u5/Command+Line+Interface+Ancillary+Programs
http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/Users+and+User+Categories
http://wikis.sun.com/display/gridengine62u5/Configuring+User+Access#ConfiguringUserAccess-indexterm115
http://wikis.sun.com/display/gridengine62u5/Configuring+Projects
http://wikis.sun.com/display/gridengine62u5/Managing+User+Access
http://wikis.sun.com/display/gridengine62u5/Configuring+Projects
http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/Displaying+Queue+Properties
http://wikis.sun.com/display/gridengine62u5/Managing+Parallel+Environments#ManagingParallelEnvironments-i998778
http://wikis.sun.com/display/gridengine62u5/Managing+Parallel+Environments#ManagingParallelEnvironments-i998778

1.

2.

command line using the following command:

% qsub -P <project-name> <options>

The cluster configurations, host configurations, and queue configurations define project access in the same way as for ACLs. These
configurations use the and parameters for this purpose.project_lists xproject_lists

Displaying User Access Permissions

Task User Interface Description

How to Display User Access Lists CLI or QMON Learn how to display user access lists.

How to Display a List of Defined Projects CLI or QMON Learn how to display a list of defined projects.

Displaying Managers, Operators, and Owners

Note
The superuser of an administration host is considered to be a manager by default.

Task User Interface Description

How to Display a List of Managers CLI or QMON Learn how to display a list of managers.

How to Display a List of Operators CLI or QMON Learn how to display a list of operators.

How to Display a List of Owners CLI or QMON Learn how to display a list of owners.

 How to Display A List of Managers From the Command Line
To , type the following command:display a list of managers

qconf -sm

 How to Display a List of Managers With QMON
Click on the User Configuration button on the QMON Main Control window.

Click on the Manager tab
A list of currently-configured managers are displayed.

 How to Display A List of Operators From the Command Line
To , type the following command:display a list of operators

http://wikis.sun.com/display/gridengine62u5/How+to+Display+User+Access+Lists+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+User+Access+Lists+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Defined+Projects+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Defined+Projects+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Managers+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Managers+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Operators+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Operators+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Owners+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Owners+With+QMON

1.

2.

1.

2.

1.

2.

qconf -so

 How to Display a List of Operators With QMON
Click on the User Configuration button on the QMON Main Control window.

Click on the Operator tab.
A list of currently-configured operators are displayed.

 How to Display a List of Owners From the Command Line
To , type the following command:display a list of owners

qconf -sq {<cluster-queue> | <queue-instance> | <queue-domain>}

 How to Display a List of Owners With QMON
Click on the User Configuration button on the QMON Main Control window.

*Click on the

 How to Display User Access Lists From the Command Line
To , type the following command:display a list of currently configured ACLS

qconf -sul

To , type the following command:display a list of currently configured ACLS

qconf -su <acl-name> [,<...>]

 How to Display User Access Lists With QMON
Click User Configuration on the QMON Main Control window.

1.

2. Click the Userset tab.
This dialog box enables you to query for the ACLs to which you have access.
You can also see what projects to which you have access. For more on projects, see .Configuring Projects

 How to Display a List of Defined Projects From the Command Line
To , type the following command:display a list of all defined projects

qconf -sprjl

To , type the following command:display a specific project configuration

qconf -sprj <project-name>

 How to Display a List of Defined Projects With QMON

 Displaying Host Properties

Clicking the button in the QMON Main Control window displays an overview of the functionality that is associated withHost Configuration

the hosts in your cluster. You need to have manager privileges to apply any changes to the configuration.

The host configuration dialog boxes are described in . The following sections describe the commands used to retrieve hostConfiguring Hosts
information from the command line.

Task User Interface Description

How To Display the Name of the Master Host CLI Learn how to display the name of the master host.

How to Display a List of Execution Hosts CLI Learn how to display a list of execution hosts.

How to Display a List of Administration Hosts CLI Learn how to display a list of administration hosts.

How to Display a List of Submit Hosts CLI Learn how to display a list of submit hosts.

 How to Display the Name of the Master Host From the Command LIne
The location of the master host can migrate between the current master host and one of the shadow master hosts at any time. Therefore, the
location of the master host should be transparent to the user.

To , view in a text editor.display the name of the master host $SGE_ROOT/$SGE_CELL/common/act_qmaster file

The name of the current master host is listed in the file.

http://wikis.sun.com/display/gridengine62u5/Configuring+Projects
http://wikis.sun.com/display/gridengine62u5/Configuring+Hosts
http://wikis.sun.com/display/gridengine62u5/How+to+Display+the+Name+of+the+Master+Host+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Execution+Hosts+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Administration+Hosts+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Submit+Hosts+From+the+Command+Line

 How to Display a List of Execution Hosts From the Command Line
To , type the following command:display a complete list of the execution hosts in your cluster

qconf -sel

To , type the following command:display the configuration for a specific execution host

qconf -se <hostname>

To , type the following command:display status and load information about execution hosts

qhost

See the man page for details on the information displayed using qconf. See the man page for details on its outputhost_conf(5) qhost(1)

and other options.

 How to Display a List of Administration Host From the Command Line
To , type the following command:display a list of administration hosts

qconf -sh

 How to Display a List of Submit Hosts From the Command Line
To , type the following command:display a list of submit hosts

qconf -ss

 Displaying Queue Properties
To make the best use of the Grid Engine system at your site, you should be familiar with the queue structure. You should also be familiar with
the properties of the queues that are configured for your Grid Engine system.

Displaying Queues and Queue Properties

Task User Interface Description

How to Display a List of Queues CLI or QMON Learn how to display a list of currently configured queues.

http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Queues+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+a+List+of+Queues+With+QMON

1.

2.

How to Display Queue Properties CLI or QMON Learn how to display queue properties for a specified queue.

 How to Display a List of Queues From the Command Line
To display a list of queues from the command line, type the following command:

% qconf -sql

 How to Display a List of Queues With QMON
Launch the QMON Main Control window.

Click the Queue Control button.
The Cluster Queue Control dialog box appears. Queue Control dialog box provides a quick overview of the installed queues and their
current status.

 How to Display Queue Properties From the Command Line
To display queue properties from the command line, type the following command:

% qconf -sq {<queue> | <queue-instance> | <queue-domain>}

Interpreting Queue Property Information

You can find a detailed description of each queue property in the man page. (5)queue_conf

The following is a list of some of the more important parameters:

qname – The queue name as requested.
hostlist – A list of hosts and host groups associated with the queue.
processors – The processors of a multiprocessor system to which the queue has access.

Caution
Do not change this value unless you are certain that you need to change it.

qtype – The type of job that can run in this queue. Currently, the type can be either batch or interactive.
slots – The number of jobs that can be executed concurrently in that queue.
owner_list – The owners of the queue. For more information, see .Users and User Categories
user_lists – The user or group identifiers in the user access lists who can access the queue. For more information, see Displaying

.User Properties
xuser_lists – The user or group identifiers in the user access lists who access the queue. For more information, see cannot

.Displaying User Properties
project_lists – The jobs submitted with the project identifiers that can access the queue. For more information, see Configuring

.Projects
xproject_lists – The jobs submitted with the project identifiers that cannot access the queue. For more information, see

.Configuring Projects
complex_values – Assigns capacities as provided for this queue for certain complex resource attributes. For more information, see

http://wikis.sun.com/display/gridengine62u5/How+to+Display+Queue+Properties+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+Queue+Properties+With+QMON
http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/Users+and+User+Categories
http://wikis.sun.com/display/gridengine62u5/Displaying+User+Properties
http://wikis.sun.com/display/gridengine62u5/Displaying+User+Properties
http://wikis.sun.com/display/gridengine62u5/Displaying+User+Properties
http://wikis.sun.com/display/gridengine62u5/Configuring+Projects
http://wikis.sun.com/display/gridengine62u5/Configuring+Projects
http://wikis.sun.com/display/gridengine62u5/Configuring+Projects

1.

2.

3.

4.

5.

6.

.Requestable Attributes

 How to Display Queue Properties With QMON
Launch the QMON Main Control window.

Click the Queue Control button.
The Cluster Queue Control dialog box appears.

Select a queue, and then click Show Detached Settings.
The Browser dialog box appears.

In the Browser dialog box, click Queue.

In the Cluster Queue dialog box, click the Queue Instances tab.

Select a queue instance.
The Browser dialog box lists the queue properties for the selected queue instance.

 Submitting Jobs
A job is a segment of work. Each job includes a description of what to do and a set of property definitions that describe how the job should be
run.

The Sun Grid Engine system recognizes the following four basic classes of jobs:

Batch Jobs – Single segments of work. Typically, a batch job is only executed once.
Array Jobs – Groups of similar work segments that can all be run in parallel but are completely independent of one another. All of the
workload segments of an array job, known as tasks, are identical except for the data sets on which they operate.
Parallel Jobs – Jobs composed of cooperating tasks that must all be executed at the same time, often with requirements about how the
tasks are distributed across the resources.
Interactive Jobs – Jobs that provide the submitting user with an interactive login to an available resource in the compute cluster.
Interactive jobs allow users to execute work on the compute cluster that is not easily submitted as a batch job.

Topic Description

How Jobs Are Scheduled Learn how jobs are scheduled using policies and queue selection.

Defining Resource Requirements Learn how you can define resource requirements for the jobs that you submit.

Requestable Attributes Learn how to define a requirement profile for the jobs that you submit.

Submitting Batch Jobs Learn how to submit batch jobs.

Submitting Array Jobs Learn how to submit array jobs.

Submitting Interactive Jobs Learn how to submit interactive jobs.

Transparent Remote Execution Learn about transparent remote execution.

Task User Interface Description

How to Submit a Simple Job CLI or QMON Learn how to submit a simple job.

How to Submit an Extended Job CLI or QMON Learn how to submit an extended job.

How to Submit an Advanced Job CLI or QMON Learn how to submit an advanced job.

How to Configure Job Dependencies CLI Learn how to configure job dependencies.

http://wikis.sun.com/display/gridengine62u5/Submitting+Jobs#SubmittingJobs-indexterm176
http://wikis.sun.com/display/gridengine62u5/How+Jobs+Are+Scheduled
http://wikis.sun.com/display/gridengine62u5/Defining+Resource+Requirements
http://wikis.sun.com/display/gridengine62u5/Requestable+Attributes
http://wikis.sun.com/display/gridengine62u5/Submitting+Batch+Jobs
http://wikis.sun.com/display/gridengine62u5/Submitting+Array+Jobs
http://wikis.sun.com/display/gridengine62u5/Submitting+Interactive+Jobs
http://wikis.sun.com/display/gridengine62u5/Transparent+Remote+Execution
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+a+Simple+Job+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+a+Simple+Job+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Extended+Job+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Extended+Job+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Advanced+Job+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Advanced+Job+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Configure+Job+Dependencies+From+the+Command+Line

1.

2.

3.

 How Jobs Are Scheduled
The Sun Grid Engine system schedules jobs using the following process:

A scheduling run is triggered in one of the following ways:
At a fixed interval. The default is every 15 seconds.
By new job submissions or notification from an execution daemon that one or more jobs has finished executing.
By using , which an administrator can use to trigger a scheduling run.qconf -tsm

The scheduler assesses the needs of all pending jobs against available resources by considering the following:

If share-based scheduling is used, the calculation takes into account the usage that has already occurred for that user
or project.

Administrator's specifications for jobs and queues
Each pending job's resource requirements (for example, CPU, memory, and I/O bandwidth)
Resource reservations that need to be made for future jobs
The cluster's current load
The host's relative performance

As a result of the scheduler's assessment, the Grid Engine system does the following tasks, as needed:
Dispatches new jobs
Suspends running jobs
Increases or decreases the resources allocated to running jobs
Maintains the status quo

Between scheduling actions, the Grid Engine system keeps information about significant events such as the following:

Job submission
Job completion
Job cancellation
An update of the cluster configuration
Registration of a new machine in the cluster

Usage Policies

The Grid Engine software's policy management automatically controls the use of shared resources in the cluster to best achieve the goals of the
administration. High priority jobs are dispatched preferentially and receive better access to resources.

The cluster administrator can define high-level usage policies. The following policies are available:

Functional – Special treatment is given because of affiliation with a certain user group, project, and so forth.
Share-based – Level of service depends on an assigned share entitlement, the corresponding shares of other users and user groups, the
past usage of resources by all users, and the current presence of users in the system.
Urgency – Preferential treatment is given to jobs that have greater urgency. A job's urgency is based on its resource requirements, how
long the job must wait, and whether the job is submitted with a deadline requirement.
Override – Manual intervention by the cluster administrator modifies the automated policy implementation.

The Grid Engine software can be set up to routinely use either a share-based policy, a functional policy, or both. These policies can be combined
in any proportion, from giving zero weight to one policy and using only the second policy, to giving both policies equal weight. Administrators
can temporarily share-based scheduling and functional scheduling. An override can be applied to an individual job or to all jobsoverride
associated with a user, a department, or a project. For more information, see .Managing Policies

Along with the routine policies, jobs can be submitted with an initiation deadline. See the description of the deadline submission parameter
under . Deadline jobs disturb routine scheduling.How to Submit an Advanced Job With QMON

Job Priorities

The Grid Engine software also lets users set individual job priorities. A user who submits several jobs can specify, for example, that job 3 is the

http://wikis.sun.com/display/gridengine62u5/Managing+Policies
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Advanced+Job+With+QMON

most important and that jobs 1 and 2 are equally important but less important than job 3.

Use one of the following options to set priorities:

QMON Submit Job parameter Priority
qsub -p option.

You can set a priority range of -1023 (lowest) to 1024 (highest). This priority tells the scheduler how to choose among users' jobs when several
jobs are in the system simultaneously.

Since users are not permitted to submit jobs with a priority higher than 0, which is the default, a best administrative practice
is to set the default priority at a lower priority, i.e. . For more information, see the man page.-100 sge_request(5)

Ticket Policies

The functional policy, the share-based policy, and the override policy are all implemented with . Each ticket policy has a ticket pool fromtickets
which tickets are allocated to jobs that are entering the Grid Engine system. Each routine ticket policy that is in force allocates some tickets to
each new job. The ticket policy can reallocate tickets to the executing job at each scheduling interval.

Tickets weight the three ticket policies. For example, if no tickets are allocated to the functional policy, then that policy is not used. If an equal
number of tickets are assigned to the functional ticket pool and to the share-based ticket pool, then both policies have equal weight in
determining a job's importance.

The following are criteria that each ticket policy uses to allocate tickets:

Grid Engine managers allocate tickets to the routine ticket policies at system configuration. Managers and operators can change ticket
allocations at any time. Additional tickets can be injected into the system temporarily to indicate an override. Ticket policies can be
combined when tickets are allocated to multiple ticket policies, a job gets a portion of its tickets from each ticket policy.
The Grid Engine system grants tickets to jobs that are entering the system to indicate their importance under each ticket policy. Each
running job can gain tickets, for example, from an override; lose tickets, for example, because the job is getting more than its fair share
of resources; or keep the same number of tickets at each scheduling interval. The number of tickets that a job holds represents the
resource share that the Grid Engine system tries to grant that job during each scheduling interval.

You can display the number of tickets a job holds with QMON or using . See . The qstat -ext How to Monitor and Control Jobs With QMON
 command also displays the priority value assigned to a job, for example, using . See the man page for more details.qstat qsub -p (1)qstat

Queue Selection

Jobs that are submitted to a named queue go directly to the named queue, regardless of whether the jobs can be started or need to be spooled.
Jobs that are not submitted to a named queue that cannot be started immediately are put into a spool. The then tries tosge_qmaster

reschedule the jobs until a suitable queue becomes available, allowing the jobs to be dispatched. Therefore, viewing the queues of the Grid
Engine system as computer science is valid only for jobs requested by name. Jobs submitted with nonspecific requests use thebatch queues
spooling mechanism of for queueing, thus using a more abstract and flexible queuing concept.sge_qmaster

If a job is scheduled and multiple free queues meet its resource requests, the job is usually dispatched to a suitable queue belonging to the least
loaded host. By setting the scheduler configuration entry to , the cluster administration can change thisqueue_sort_method seq_no

load-dependent scheme into a fixed order algorithm. The queue configuration entry defines a precedence among the queues,seq_no

assigning the highest priority to the queue with the lowest sequence number.

 Defining Resource Requirements
In the examples so far, the submit options do not express any resource requirements for the hosts on which the jobs are to be executed. The
Grid Engine system assumes that such jobs can be run on any host. In practice, however, most jobs require that certain prerequisites be met on
the executing host in order for the job to finish successfully. These prerequisites include:

Enough available memory
Installation of required software

http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-chp527
http://gridengine.sunsource.net/manpages.html

1.
2.
3.
4.

Certain operating system architecture

Also, the cluster administrator usually imposes restrictions on the use of the machines in the cluster. For example, the CPU time that can be
consumed by the jobs is often restricted.

The Grid Engine system provides users with the means to find suitable hosts for their jobs without precise knowledge of the cluster`s
equipment and its usage policies. Users specify the requirement of their jobs and let the Grid Engine system manage the task of finding a
suitable and lightly loaded host.

You specify resource requirements through , which are described in . QMON provides a convenientrequestable attributes Requestable Attributes
way to specify the requirements of a job. The Requested Resources dialog box displays only those attributes in the Available Resource list that
are currently eligible. Click Request Resources in the Submit Job dialog box to open the Requested Resources dialog box.

When you double-click an attribute, the attribute is added to the Hard or Soft Resources list of the job. A dialog box opens to guide you in
entering a value specification for the attribute in question, except for BOOLEAN attributes, which are set to True. For more information, see

.How the Grid Engine System Allocates Resources

Figure – Requested Resources Dialog Box shows a resource profile for a job that requests a host with an available licensesolaris64 permas

offering at least 750 MBytes of memory. If more than one queue that fulfills this specification is found, any defined soft resource requirements
are taken into account. However, if no queue satisfying both the hard and the soft requirements is found, any queue that grants the hard
requirements is considered suitable.

Note
The parameter of the scheduler configuration determines where to start the job only if more thanqueue_sort_method

one queue is suitable for a job. See the man page for more information.(5)sched_conf

The attribute , an integer, is an administrator extension to the global resource attributes. The attribute , a string, is a host resourcepermas arch

attribute. The attribute , memory, is a queue resource attribute.h_vmem

An equivalent resource requirement profile can as well be submitted from the command line:qsub

% qsub -l arch=solaris64,h_vmem=750M,permas=1 \
 permas.sh

The implicit switch before the first option has been skipped.-hard -l

The notation for 750 MBytes is an example of the quantity syntax of the Grid Engine system. For those attributes that request a memory750M

consumption, you can specify either integer decimal, floating-point decimal, integer octal, and integer hexadecimal numbers. The following
multipliers must be appended to these numbers:

k – Multiplies the value by 1000
K – Multiplies the value by 1024
m – Multiplies the value by 1000 times 1000
M – Multiplies the value by 1024 times 1024

Octal constants are specified by a leading zero and digits ranging from 0 to 7 only. To specify a hexadecimal constant, you must prefix the
number with 0x. You must also use digits ranging from 0 to 9, a through f, and A through F. If no multipliers are appended, the values are
considered to count as bytes. If you are using floating-point decimals, the resulting value is truncated to an integer value.

For those attributes that impose a time limit, you can specify time values in terms of hours, minutes, or seconds, or any combination. Hours,
minutes, and seconds are specified in decimal digits separated by colons. A time of is translated to 11111 seconds. If zero is a specifier3:5:11

for hours, minutes, or seconds, you can leave it out if the colon remains. Thus a value of is interpreted as 5 minutes. The form used in the:5:

Requested Resources dialog box that is shown in is an extension, which is valid only within QMON.Figure – Requested Resources Dialog Box

How the Grid Engine System Allocates Resources

Knowing how the Grid Engine software processes resource requests and allocates resources is important. The resource allocation algorithm that
Grid Engine software uses is as follows:

Read in and parse all default request files. See for details.Default Request Files
Process the script file for embedded options. See for details.Active Comments
Read all script-embedding options when the job is submitted, regardless of their position in the script file.
Read and parse all requests from the command line.

http://wikis.sun.com/display/gridengine62u5/Requestable+Attributes
http://wikis.sun.com/display/gridengine62u5/How+to+Display+Requestable+Attributes+With+QMON#HowtoDisplayRequestableAttributesWithQMON-i1003747
http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/How+to+Display+Requestable+Attributes+With+QMON#HowtoDisplayRequestableAttributesWithQMON-i1003747
http://wikis.sun.com/display/gridengine62u5/Submitting+Batch+Jobs#SubmittingBatchJobs-i999081

1.
2.
3.

As soon as all requests are collected, and requests are processed separately.qsub hard soft

The requests are evaluated in the following order of precedence:

From left to right of the script or default request file.
From top to bottom of the script or default request file.
From left to right of the command line. In other words, you can use the command line to override the embedded flags.

Hard requests are processed first. If a hard request is not valid, the submission is rejected. If one or hard more requests cannot be met at submit
time, the job is spooled and rescheduled to be run at a later time. For example, a hard request might not be met if a requested queue is busy. If
all hard requests can be met, the resources are allocated and the job can be run.

The soft resource requests are then checked. The job can run even if some or all of these requests cannot be met. If multiple queues that meet
the hard requests provide parts of the soft resources list, the Grid Engine software selects the queues that offer the most soft requests.

The job is started and covers the allocated resources.

You might want to gather experience of how argument list options and embedded options or hard and soft requests influence each other. You
can experiment with small test script files that execute UNIX commands such as or .hostname date

 Requestable Attributes
When you submit a job, a requirement profile can be specified. You can specify attributes or characteristics of a host or queue that the job
requires to run successfully.

The attributes that can be used to specify the job requirements are related to one of the following:

The cluster, for example, space required on a network shared disk
Individual hosts, for example, operating system architecture
Queues, for example, permitted CPU time

The attributes can also be derived from site policies such as the availability of installed software only on certain hosts.

The available attributes include the following:

Queue property list – See Displaying Queue Properties
List of global and host-related attributes – See Assigning Resource Attributes to Queues, Hosts, and the Global Cluster
Administrator-defined attributes

For convenience, however, the administrator commonly chooses to define only a subset of all available attributes to be requestable.

The Grid Engine system complex contains the definitions for all resource attributes. For more information about resource attributes, see
. See also the complex format description on the man page.Configuring Resource Attributes (5)complex

Task User Interface Description

How to Display Requestable Attributes CLI or QMON Learn how to display requestable attributes.

 How to Display Requestable Attributes From the Command Line
From the command line, type the following:

% qconf -sc

The following example shows sample output from the command:qconf -sc

http://wikis.sun.com/display/gridengine62u5/Displaying+Queue+Properties
http://wikis.sun.com/display/gridengine62u5/Configuring+Resource+Attributes#ConfiguringResourceAttributes-indexterm376
http://wikis.sun.com/display/gridengine62u5/Configuring+Resource+Attributes
http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/How+to+Display+Requestable+Attributes+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Display+Requestable+Attributes+With+QMON

gimli% qconf -sc
#name shortcut type relop requestable consumable urgency default
#--
arch a RESTRING == YES NO NONE 0
calendar c STRING == YES NO NONE 0
cpu cpu DOUBLE >= YES NO 0 0
h_core h_core MEMORY <= YES NO 0 0
h_cpu h_cpu TIME <= YES NO 0:0:0 0
h_data h_data MEMORY <= YES NO 0 0
h_fsize h_fsize MEMORY <= YES NO 0 0
h_rss h_rss MEMORY <= YES NO 0 0
h_rt h_rt TIME <= YES NO 0:0:0 0
h_stack h_stack MEMORY <= YES NO 0 0
h_vmem h_vmem MEMORY <= YES NO 0 0
hostname h HOST == YES NO NONE 0
load_avg la DOUBLE >= NO NO 0 0
load_long ll DOUBLE >= NO NO 0 0
load_medium lm DOUBLE >= NO NO 0 0
load_short ls DOUBLE >= NO NO 0 0
mem_free mf MEMORY <= YES NO 0 0
mem_total mt MEMORY <= YES NO 0 0
mem_used mu MEMORY >= YES NO 0 0
min_cpu_interval mci TIME <= NO NO 0:0:0 0
np_load_avg nla DOUBLE >= NO NO 0 0
np_load_long nll DOUBLE >= NO NO 0 0
np_load_medium nlm DOUBLE >= NO NO 0 0
np_load_short nls DOUBLE >= NO NO 0 0
num_proc p INT == YES NO 0 0
qname q STRING == YES NO NONE 0
rerun re BOOL == NO NO 0 0
s_core s_core MEMORY <= YES NO 0 0
s_cpu s_cpu TIME <= YES NO 0:0:0 0
s_data s_data MEMORY <= YES NO 0 0
s_fsize s_fsize MEMORY <= YES NO 0 0
s_rss s_rss MEMORY <= YES NO 0 0
s_rt s_rt TIME <= YES NO 0:0:0 0
s_stack s_stack MEMORY <= YES NO 0 0
s_vmem s_vmem MEMORY <= YES NO 0 0
seq_no seq INT == NO NO 0 0
slots s INT <= YES YES 1 1000
swap_free sf MEMORY <= YES NO 0 0
swap_rate sr MEMORY >= YES NO 0 0
swap_rsvd srsv MEMORY >= YES NO 0 0
swap_total st MEMORY <= YES NO 0 0
swap_used su MEMORY >= YES NO 0 0
tmpdir tmp STRING == NO NO NONE 0
virtual_free vf MEMORY <= YES NO 0 0
virtual_total vt MEMORY <= YES NO 0 0
virtual_used vu MEMORY >= YES NO 0 0
>#< starts a comment but comments are not saved across edits --------

The column is identical to the first column displayed by the command. The column containsname qconf -sq shortcut

administrator-definable abbreviations for the full names in the first column. The user can supply either the full name or the shortcut in the
request option of a command.qsub

The column tells whether the resource attribute can be used in a command. The administrator can, for example, disallowrequestable qsub

the cluster's users to request certain machines or queues for their jobs directly. The administrator can disallow direct requests by setting the
entries , , or both, to be unrequestable. Making queues or hosts unrequestable implies that feasible user requests can be metqname hostname

in general by multiple queues, which enforces the load balancing capabilities of the Grid Engine system.

The column defines the relational operator used to compute whether a queue or a host meets a user request. The comparison that isrelop

executed is as follows:

User_Request relop Queue/Host/... -Property

If the result of the comparison is false, the user's job cannot be run in the queue or on the host. For example, let the queue be configuredq1

with a soft CPU time limit of 100 seconds. Let the queue be configured to provide 1000 seconds soft CPU time limit. See the q2 queue_conf

 and the man pages for a description of user process limits.(5) (2)setrlimit

http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html

1.

2.

3.

The columns and affect how the administrator declares consumable resources. See .consumable default Consumable Resources

The user requests consumables just like any other attribute. The Grid Engine system internal bookkeeping for the resources is different,
however.

Assume that a user submits the following request:

% qsub -l s_cpu=0:5:0 nastran.sh

The request asks for a queue that grants at least 5 minutes of soft limit CPU time. Therefore, only queues providing at least 5s_cpu=0:5:0

minutes soft CPU runtime limit are set up properly to run the job. See the man page for details on the syntax.(1)qsub

Note
The Grid Engine software considers workload information in the scheduling process only if more than one queue or host can
run a job.

 How to Display Requestable Attributes With QMON
Click the Job Control button in the QMON Main Control window.
The Job Control dialog box appears.

Select a pending job and and click the Submit button.
The Submit Job dialog box appears.

Click the Request Resources button.
The Requested Resources dialog box displays the currently requestable attributes under Available Resources, which is shown in the
following figure.

http://wikis.sun.com/display/gridengine62u5/Configuring+Resource+Attributes#ConfiguringResourceAttributes-i998850
http://gridengine.sunsource.net/manpages.html

 Submitting Batch Jobs
The following sections describe how to submit more complex jobs through the Grid Engine system:

About Shell Scripts
Example of a Shell Script
Extensions to Regular Shell Scripts

For information about submitting simple jobs, see .How to Submit a Simple Job

About Shell Scripts

Shell scripts, also called batch jobs, are a sequence of command-line instructions that are assembled in a file. Each instruction is interpreted as if
the instruction were typed manually by the user who is running the script. You can invoke arbitrary commands, applications, and other shell
scripts from within a shell script.

Script files are made executable by the command. If scripts are invoked, a command interpreter is started. , , , or arechmod csh tcsh sh ksh

typical command interpreters.

The command interpreter can be invoked as login shell. To do so, the name of the command interpreter must be contained in the
 list of the Grid Engine system configuration that is in effect for the particular host and queue that is running the job.login_shells

Note
The Grid Engine system configuration might be different for the various hosts and queues configured in your cluster. You can
display the effective configurations with the and options of the command. For detailed information, see-sconf -sq qconf

the man page.(1)qconf

If the command interpreter is invoked as login shell, your job environment is the same as if you logged in and ran the script. In using , forcsh

example, and are executed in addition to the system default startup resource files, such as , whereas only .login .cshrc /etc/login

 is executed if is not invoked as . For a description of the difference between being invoked and not being invoked.cshrc csh login-shell

as , see the man page for your command interpreter.login-shell

Example of a Shell Script

The following example is a simple shell script that compiles the application from its Fortran77 source and then runs the application:flow

#!/bin/csh
This is a sample script file compiling and for
running a sample FORTRAN program under N1 Grid Engine 6
cd TEST
Now we need to compile the program and"flow.f"
name the executable ."flow"
f77 flow.f -o flow

Your local system user's guide provides detailed information about building and customizing shell scripts. You might also want to look at the ,sh

, , or man pages. The following sections emphasize special things that you should consider when you prepare batch scripts for theksh csh tcsh

Grid Engine system.

In general, you can submit all shell scripts to the Grid Engine system that you can run from your command prompt by hand. These shell scripts
must not require a terminal connection or need interactive user intervention. The exceptions are the standard error and standard output
devices, which are automatically redirected.

Extensions to Regular Shell Scripts

Some extensions to regular shell scripts influence the behavior of scripts that run under Grid Engine system control. The following sections
describe these extensions.

http://wikis.sun.com/display/gridengine62u5/Submitting+Jobs#SubmittingJobs-simplejob
http://gridengine.sunsource.net/manpages.html

How a Command Interpreter Is Selected

At submit time, you can specify the command interpreter to use for the job script file as shown in .Figure – Extended Job Submission Example
However, if nothing is specified, the configuration variable determines how the command interpreter is selected:shell_start_mode

If is set to , the first line of the script file specifies the command interpreter. The first line ofshell_start_mode unix_behavior

the script file must begin with a pound symbol () followed by an exclamation point (). If the first line does not begin with those# !

characters, the Bourne Shell is used by default.sh

For all other settings of , the default command interpreter is determined by the parameter for the queueshell_start_mode shell

where the job starts. See and the man page.Displaying Queue Properties (5)queue_conf

Output Redirection

Since batch jobs do not have a terminal connection, their standard output and their standard error output must be redirected into files. The
Grid Engine system enables the user to define the location of the files to which the output is redirected. Defaults are used if no output files are
specified.

The standard location for the files is in the current working directory where the jobs run. The default standard output file name is job-name.o
. The default standard error output is redirected to . The can be built from the script file name, or defined byjob-id job-name>.ejob-id job-name

the user. See, for example, the option in the man page. is a unique identifier that is assigned to the job by the Grid Engine-N (1)submit job-id
system.

For array job tasks, the task identifier is added to these filenames, separated by a dot. The resulting standard redirection paths are job-name.o
. and . . For more information, see .job-id task-id> job-name.ejob-id task-id Submitting Array Jobs

If the standard locations are not suitable, you can use one of the following to specify output directions:

QMON as shown in Figure – Advanced Job Submission Example
-e and options to the command-o qsub

Standard output and standard error output can be merged into one file. The redirections can be specified on a per execution host basis, in
which case, the location of the output redirection file depends on the host on which the job is executed. To build custom but unique redirection
file paths, use dummy environment variables together with the and options. A list of these variables follows:qsub -e -o

 – Home directory on execution machineHOME

 – User ID of job ownerUSER

 – Current job IDJOB_ID

 – Current job name; see the optionJOB_NAME -N

 – Name of the execution hostHOSTNAME

 – Array job task index numberTASK_ID

When the job runs, these variables are expanded into the actual values, and the redirection path is built with these values. See the man(1)qsub

page for further details.

Active Comments

Lines with a leading sign are treated as comments in shell scripts. The Grid Engine system also recognizes special comment lines that supply#

options to commands or to the QMON interface. By default, these special comment lines are identified by the prefix string. You can redefine#$

the prefix string with the command.qsub -C

This use of special comments is referred to as "script embedding of submit arguments." The following example shows a script file that uses
script-embedded command-line options to supply arguments to the command. These options also apply to the QMON Submit Job dialogqsub

box. The corresponding parameters are preset when a script file is selected.

Example – Using Script-Embedded Command Line Options

http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Extended+Job+With+QMON#HowtoSubmitanExtendedJobWithQMON-i1001166
http://wikis.sun.com/display/gridengine62u5/Displaying+Queue+Properties
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/Submitting+Array+Jobs
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Advanced+Job+With+QMON#HowtoSubmitanAdvancedJobWithQMON-i1001441
http://gridengine.sunsource.net/manpages.html

#!/bin/csh

#Force csh not Grid Engine if default
#shell

#$ -S /bin/csh

This is a sample script file compiling andfor
running a sample FORTRAN program under N1 Grid Engine 6
We want Grid Engine to send mail
when the job begins
and when it ends.

#$ -M EmailAddress
#$ -m b e

We want to name the file the standard outputfor
and standard error.

#$ -o flow.out -j y

Change to the directory where the files are located.

cd TEST

Now we need to compile the program and"flow.f"
name the executable ."flow"

f77 flow.f -o flow

Once it is compiled, we can run the program.

flow

Environment Variables

Note
If you would to change the predefined values of these variables, use the or options with or . For more-V -v qsub qalter

information, see the man page.qsub(1)

When a job runs, the following variables are preset into the job's environment:

 – The architecture name of the node on which the job is running. The name is compiled into the binary.ARC sge_execd

 – The root directory of the Grid Engine system as set for before startup, or the default directory.$SGE_ROOT sge_execd /usr/SGE

 – The directory in which the Grid Engine system binaries are installed.SGE_BINARY_PATH

 – The cell in which the job runs.$SGE_CELL

 – The directory used by to store job-related data while the job runs.SGE_JOB_SPOOL_DIR sge_shepherd

 – The path to the home directory of the job owner on the host from which the job was submitted.SGE_O_HOME

 – The host from which the job was submitted.SGE_O_HOST

 – The login name of the job owner on the host from which the job was submitted.SGE_O_LOGNAME

 – The content of the environment variable in the context of the job submission command.SGE_O_MAIL MAIL

 – The content of the environment variable in the context of the job submission command.SGE_O_PATH PATH

 – The content of the environment variable in the context of the job submission command.SGE_O_SHELL SHELL

 – The content of the environment variable in the context of the job submission command.SGE_O_TZ TZ

 – The working directory of the job submission command.SGE_O_WORKDIR

 – The checkpointing environment under which a checkpointing job runs. The checkpointing environment is selectedSGE_CKPT_ENV

with the command.qsub -ckpt

 – The path of the checkpoint interface. Set only for checkpointing jobs. For more information, see the SGE_CKPT_DIR ckpt_dir

 man page.(5)checkpoint

 – The path name of the file to which the standard error stream of the job is diverted. This file is commonly usedSGE_STDERR_PATH

for enhancing the output with error messages from prolog, epilog, parallel environment start and stop scripts, or checkpointing scripts.
 – The path name of the file to which the standard output stream of the job is diverted. This file is commonly usedSGE_STDOUT_PATH

for enhancing the output with messages from prolog, epilog, parallel environment start and stop scripts, or checkpointing scripts.
 – The unique index number for an array job task. You can use the to reference various input dataSGE_TASK_ID SGE_TASK_ID

http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html

records. This environment variable is set to for non-array jobs. It is possible to change the predefined value of this variableundefined

with the or submit option. For more information, see the man page.-v -V qsub(1)

SGE_TASK_FIRST – The index number of the first array job task. For more information, see the option for . It is possible to-t qsub

change the predefined value of this variable with the or submit option.-v -V

SGE_TASK_LAST – The index number of the last array job task. For more information, see the option for . It is possible to-t qsub

change the predefined value of this variable with the or submit option.-v -V

SGE_TASK_STEPSIZE – The step size of the array job specification. For more information, see the option for . It is possible-t qsub

to change the predefined value of this variable with the or submit option.-v -V

 – Always set to . This variable indicates that the script is run in batch mode.ENVIRONMENT BATCH

 – The user's home directory path as taken from the file.HOME passwd

 – The host name of the node on which the job is running.HOSTNAME

 – A unique identifier assigned by the daemon when the job was submitted. The job ID is a decimal integerJOB_ID sge_qmaster

from 1 through 9,999,999.
 – The job name, which is built from the file name provided with the command, a period, and the digits of the job ID.JOB_NAME qsub

You can override this default with .qsub -N

 – The user's login name as taken from the file.LOGNAME passwd

-- The number of hosts in use by a parallel job.NHOSTS

 – The number of queues that are allocated for the job. This number is always 1 for serial jobs.NQUEUES

 – The number of queue slots in use by a parallel job.NSLOTS

 – A default shell search path of: .PATH /usr/local/bin:/usr/ucb:/bin:/usr/bin

 – The parallel environment under which the job runs. This variable is for parallel jobs only.PE

 – The path of a file that contains the definition of the virtual parallel machine that is assigned to a parallel job by thePE_HOSTFILE

Grid Engine system. This variable is used for parallel jobs only. See the description of the parameter in for$pe_hostfile sge_pe

details on the format of this file.
 – The name of the queue in which the job is running.QUEUE

 – The request name of the job. The name is either the job script file name or is explicitly assigned to the job by the REQUEST qsub -N

command.
 – Indicates whether a checkpointing job was restarted. If set to value 1, the job was interrupted at least once. The job isRESTARTED

therefore restarted.
 – The user's login shell as taken from the file.SHELL passwd

Note
SHELL is not necessarily the shell that is used for the job.

 – The absolute path to the job's temporary working directory.TMPDIR

 – The same as . This variable is provided for compatibility with NQS.TMP TMPDIR

 – The time zone variable imported from , if set.TZ sge_execd

 – The user's login name as taken from the file.USER passwd

 Submitting Array Jobs

Submitting Array Jobs

Parameterized and repeated execution of the same set of operations that are contained in a job script is an ideal application for the array job
facility of the Grid Engine system. Typical examples of such applications are found in the Digital Content Creation industries for tasks such as
rendering. Computation of an animation is split into frames. The same rendering computation can be performed for each frame independently.

The Grid Engine system provides an efficient implementation of array jobs, handling the computations as an array of independent tasks joined
into a single job. The tasks of an array job are referenced through an array index number. The indexes for all tasks span an index range for the
entire array job. The index range is defined during submission of the array job by a single command.qsub

You can monitor and control an array job. For example, you can suspend, resume, or cancel an array job as a whole or by individual task or
subset of tasks. To reference the tasks, the corresponding index numbers are suffixed to the job ID. Tasks are executed very much like regular
jobs. Tasks can use the environment variable to retrieve its own task index number and to access input data sets designated forSGE_TASK_ID

this task identifier.

Task User Interface Description

http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html

How to Submit an Array Job CLI or QMON

How to Configure Array Job Dependencies CLI

 How to Configure Array Task Dependencies From the Command Line
While most interdependent tasks can be supported by Sun Grid Engine's job dependency facility, certain array jobs require the flexibility
provided by the array task dependency facility. The array task dependency facility allows users to make one array job's tasks dependent on the
tasks of another array job. For example, if you use Sun Grid Engine to render video effects, the array task dependency allows you to submit each
step as an array job where each task represents a frame. Each task then depends on the corresponding task in the previous step.

To , use the following command:configure an array task dependency

qsub -hold_jid_ad wc_job_list

The option defines or redefines the job array dependency list of the submitted job. A reference by job name or pattern is only-hold_jid_ad

accepted if the referenced job is owned by the same user as the referring job. Each sub-task of the submitted job is not eligible for execution
unless the corresponding sub-tasks of all jobs referenced in the comma-separated job id and/or job name list have completed.

For more on the option, see the man page. The type is detailed in .-hold_jid_ad qsub(1) wc_job_list sge_types(1)

Examples – Using Job Dependencies Versus Array Task Dependencies to Complete Array Jobs

The following example illustrates the difference between the job dependency facility and the task array dependency facility:

In the following example, array task is dependent on array task :B A

$ qsub -t 1-3 A
$ qsub -hold_jid A -t 1-3 B

All the sub-tasks in will wait for all sub-tasks , and in to finish before starting the tasks in . The tasks will bejob B 1 2 3 A job B

executed in the following approximate order: , , , , , , as shown below:A.1 A.2 A.3 B.1 B.2 B.3

A.1		B.1
A.2	-->	B.2
A.3		B.3

In the following example, each sub-task in array is dependent on each corresponding sub-task in in a one-to-onejob B job A

mapping:

$ qsub -t 1-3 A
$ qsub -hold_jid_ad A -t 1-3 B

Sub-task B.1 will only start when completes. will only start once completes, etc. On a single machine renderfarm, theA.1 B.2 A.2

tasks thus could be executed in the following approximate order: , , , , , , as shown below:A.1 B.1 A.2 B.2 A.3 B.3

A.1	-->	B.1
A.2	-->	B.2
A.3	-->	B.3

It should only be able to specify the option if we are submitting an array job, it is dependent on another array job, and that array job
has the same number of sub-tasks.

Examples – Using Array Task Dependencies to Chunk Tasks

http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Array+Job+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Array+Job+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Configure+Array+Task+Dependencies+From+the+Command+Line

When using 3D rendering applications, it is often more efficient to render several frames at once on the same CPU instead of distributing the
frames across several machines. The generation of several frames at once we will refer to as .chunking

When using the task dependency facility, the array task must have the same range of sub-tasks as its dependent array task,
otherwise the job will be rejected at submit time.

The following examples illustrate chunking:

Array task is dependent on array task , which has a step size of 2:B A

$ qsub -t 1-6:2 A
$ qsub -hold_jid_ad A -t 1-6 B

In the results shown below, it is assumed that array task is chunking, which means that and are dependent on , andA B.1 B.2 A.1 B.3

 are dependent on , and so on. If job didn't render frame 2, then job would fail:B.4 A.3 A.1 B.2

A.1	-->	B.1
	-->	B.2
A.3	-->	B.3
	-->	B.4
A.5	-->	B.5
	-->	B.6

Array task is dependent on array task , which has a step size of 1:B A

$ qsub -t 1-6 A
$ qsub -hold_jid_ad A -t 1-6:2 B

In this example shown below, array task is chunking, which means that job is dependent on job and job , job isB B.1 A.1 A.2 B.3

dependent on job and job , and so on. It is reasonable to always assume that array task is chunking because otherwise , A.3 A.4 B A.2

, and would be needlessly run and the result would never be used:A.4 A.6

A.1	-->	B.1
A.2	-->	
A.3	-->	B.3
A.4	-->	
A.5	-->	B.5
A.6	-->	

Array task has a step size of 3 and array task has a step size of 2. The tasks are dependent on each other:A B

$ qsub -t 1-6:3 A
$ qsub -hold_jid_ad A -t 1-6:2 B

In this example shown below, both array task and array task are chunking. So, job is dependent on job , job isA B B.1 A.1 B.3

dependent on job and job , and job is dependent on job . When the hold array dependency option A.1 A.4 B.5 A.4 -hold_jid_ad

is specified and the step sizes of the array job and the dependent array job are different, we assume that both are chunking:always

A.1	-->	B.1
	-->	
	-->	B.3
A.4	-->	
	-->	B.5
	-->	

 How to Submit an Array Job From the Command Line
To submit an array job from the command line, type the following command:

qsub -t <n[-m[:s]]> <job.sh>

The option defines the task index range. The argument indicates the following:-t n[-m[:s]]

The lowest index number ()n
The highest index number ()m
The step size ()s

The range may be a single number (), a simple range (), or a range with a step size ().n n-m n-m:s

For more information, see the man page.qsub(1)

Example – Array Job

The following is an example of how to submit an array job:

% qsub -l h_cpu=0:45:0 -t 2-10:2 render.sh data.in

Each task requests a hard CPU time limit of minutes with the option. The option defines the task index range. In this case, 45 -l -t 2-10:2

specifies that is the lowest index number, and is the highest index number. Only every second index, the part of the specification, is2 10 :2

used. Thus, the array job is made up of 5 tasks with the task indices 2, 4, 6, 8, and 10. Each task executes the job script once therender.sh

task is dispatched and started by the Grid Engine system. Tasks can use to find their index number, which they can use to findSGE_TASK_ID

their input data record in the data file .data.in

 How to Submit an Array Job With QMON
To submit an array job, follow the instructions in , additionally taking into account the followingHow to Submit a Simple Job With QMON
information.

The only difference is that the Job Tasks input window that is shown in must contain the task rangeFigure – Extended Job Submission Example
specification. The task range specification uses syntax that is identical to the command. See the man page for detailedqsub -t (1)qsub

information about array index syntax.

For information about monitoring and controlling jobs in general, and about array jobs in particular, see . SeeMonitoring and Controlling Jobs
also the for (1), (1), (1), (1), and (1).man pages qstat qhold qrls qmod qdel

Note
Array tasks cannot have interdependencies with other jobs or with other array tasks.

 Submitting Interactive Jobs
The submission of interactive jobs instead of batch jobs is useful in situations where a job requires your direct input to influence the job results.
Such situations are typical for X Windows applications or for tasks in which your interpretation of immediate results is required to steer further
processing.

You can create interactive jobs in three ways:

http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+a+Simple+Job+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Extended+Job+With+QMON#HowtoSubmitanExtendedJobWithQMON-i1001166
http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs
http://gridengine.sunsource.net/manpages.html

 – An rlogin-like session that is started on a host selected by the Grid Engine software.qlogin

 – The equivalent of the standard UNIX facility. A command is run remotely on a host selected by the Grid Engine system. Ifqrsh rsh

no command is specified, a remote session is started on a remote host.rlogin

 – An that is displayed from the machine that is running the job. The display is set corresponding to your specification or toqsh xterm

the setting of the environment variable. If the variable is not set, and if no display destination is defined, the GridDISPLAY DISPLAY

Engine system directs the to the 0.0 screen of the X server on the host from which the job was submitted.xterm

Note
Contact your system administrator to find out if your cluster is prepared for interactive job execution. To function
correctly, all the facilities need proper configuration of cluster parameters of the Grid Engine system. The correct

 execution paths must be defined for . Interactive queues must be available for this type of job.xterm qsh

The default handling of interactive jobs differs from the handling of batch jobs. Interactive jobs are not queued if the jobs cannot be executed
when they are submitted. When a job is not queued immediately, the user is notified that the cluster is currently too busy.

You can change this default behavior with the option to , , and . If you use this option, interactive jobs are queued-now no qsh qlogin qrsh

like batch jobs. When you use the option, batch jobs that are submitted with can also be handled like interactive jobs. Such-now yes qsub

batch jobs are either dispatched for running immediately, or they are rejected.

Note
Interactive jobs can be run only in queues of the type . See for details.INTERACTIVE Configuring Queues

The following sections describe how to use the and facilities. The command is explained in a broader context in qlogin qsh qrsh Transparent
.Remote Execution

Task User Interface Description

How to Submit Interactive Jobs CLI or QMON Learn how to submit interactive jobs.

 How to Submit Interactive Jobs From the Command Line

Note
The output for an interactive job be redirected with the , , and options. However, since the output for acannot -j y|n -o -e

prolog and epilog script is sent to the default and files, you can use the , , and options tostdout stderr -j y|n -o -e

redirect this output to different files. For more information, see the man page.qsub(1)

Using to Submit Interactive Jobsqrsh

qrsh supports most of the options. If no options are given, will open an -like session.qsub qrsh rlogin

To , type a command like the following:submit an interactive job with the commandqrsh

qrsh -pty y vi

This command starts a editor on any available system in the Sun Grid Engine cluster. The option starts a job in a pseudo-terminalvi -pty y

session. The pseudo-terminal allows full cursor control from within the session.vi

Using to Submit Interactive Jobsqsh

qsh is very similar to . supports several of the options, as well as the additional option to direct the display of the qsub qsh qsub -display

 to be invoked. See the man page for details.xterm (1)qsub

To , type a command like the following:submit an interactive job with the commandqsh

http://wikis.sun.com/display/gridengine62u5/Configuring+Queues
http://wikis.sun.com/display/gridengine62u5/Transparent+Remote+Execution
http://wikis.sun.com/display/gridengine62u5/Transparent+Remote+Execution
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+Interactive+Jobs+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Submit+Interactive+Jobs+With+QMON
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/manuals.html?pathrev=V62u2_TAG

1.

2.

3.

% qsh -l arch=solaris64

This command starts an on any available Sun Solaris 64-bit operating system host.xterm

Using to Submit Interactive Jobsqlogin

Use the command from any terminal window to start an interactive session under the control of the Grid Engine system.qlogin

To , type a command like the following:submit an interactive job with the commandqlogin

% qlogin -l star-cd=1,h_cpu=6:0:0

This command locates a low-loaded host. The host has a Star-CD license available. The host also has at least one queue that can provide a
minimum of six hours hard CPU time limit.

Note
Depending on the remote login facility that is configured to be used by the Grid Engine system, you might have to provide
your user name, your password, or both, at a login prompt.

 How to Submit Interactive Jobs With QMON

Note
The only type of interactive jobs that you can submit from QMON are jobs that bring up an on a host selected by thexterm

Grid Engine system.

Click the Job Control button in the QMON Main Control window.
The Job Control dialog box appears.

Select the Submit Jobs button.

Verify that the top button on the right side of the dialog box says "Interactive." If not, click the button to change from Batch to
Interactive.
This prepares the Submit Job dialog box to submit interactive jobs. The meaning and the use of the selection options in the dialog box
is almost the same as that described for batch jobs in . The difference is that several input fields are grayed outSubmitting Batch Jobs
because those fields do not apply to interactive jobs. The following figures show the general and advanced variations of the Interactive
Submit Job dialog box.

http://wikis.sun.com/display/gridengine62u5/Submitting+Batch+Jobs

3.

 Transparent Remote Execution
Remote Execution With qrsh

Invoking Transparent Remote Execution With qrsh
Transparent Job Distribution With qtcsh

qtcsh Usage
Parallel Makefile Processing With qmake

qmake Usage

The Grid Engine system provides a set of closely related facilities that support the transparent remote execution of certain computational tasks.
The core tool for this functionality is the command, which is described in . Two high-level facilities, qrsh Remote Execution With qrsh qtcsh

and , build on top of . These two commands enable the Grid Engine system to transparently distribute implicit computational tasks,qmake qrsh

thereby enhancing the standard UNIX facilities and . is described in . ismake csh qtcsh Transparent Job Distribution With qtcsh qmake

described in .Parallel Makefile Processing With qmake

Remote Execution With qrsh

qrsh is the major enabling infrastructure for the implementation of the and the facilities. is also used for the tightqtcsh qmake qrsh

integration of the Grid Engine system with parallel environments such as MPI or PVM.

You can use for various purposes, including the following:qrsh

To provide remote execution of interactive applications that use the Grid Engine system. This is comparable to the standard UNIX
facility , which is also called on HP-UX systems.rsh remsh

To offer interactive login session capabilities that use the Grid Engine system. By default, is similar to the standard UNIX facilityqlogin

 but it can also be configured to use the UNIX facility or any similar remote login facility.rlogin telnet

To allow for the submission of batch jobs that support terminal I/O (standard output, standard error, and standard input) and terminal
control.
To provide a way to submit a standalone program that is not embedded in a shell script.

Note
You can also submit scripts with by using the option. For more information, see the man page.qrsh -b n qrsh

To provide a submission client that remains active while a batch job is pending or running and that goes away only if the job finishes or
is cancelled.
To allow for the Grid Engine system-controlled remote running of job tasks within the framework of the dispersed resources allocated
by parallel jobs. See .Tight Integration of Parallel Environments and Grid Engine Software

Invoking Transparent Remote Execution With qrsh

Type the command, adding options and arguments according to the following syntax:qrsh

% qrsh [<options>] <program>|<shell-script> [<arguments>] \
 [> stdout] [>&2 stderr] [< stdin]

qrsh understands almost all options of . provides the following options:qsub qrsh

 – specifies that the job is scheduled immediately. The job is rejected if no appropriate resources are-now yes|no -now yes

available. is the default. specifies that the job is queued like a batch job if the job cannot be started at submission-now yes -now no

time.
 – does not go through the scheduling process to start a job-task. Instead, assumes that the job is embedded in-inherit qrsh qrsh

a parallel job that already has allocated suitable resources on the designated remote execution host. This form of is commonlyqrsh

used in and in a tight parallel environment integration. The default is not to inherit external job resources.qmake

 – When specified with the option, enables you to use to submit script jobs.-binary yes|no n qrsh

 – With this option, you do not start the command line that is given to in a user's login shell. Instead, you execute the-noshell qrsh

command without the wrapping shell. Use this option to speed up execution.
 – Suppresses the input stream . With this option set, passes the option to the command. Suppression-nostdin STDIN qrsh -n rsh

of the input stream is especially useful if multiple tasks are executed in parallel using , for example, in a process. It isqrsh make

undefined which process gets the input.
-pty yes|no – Available for and only, starts the job in a pseudo terminal (pty). If no pty is available, theqrsh qlogin -pty yes

job fails to start. starts the job without a pseudo terminal. By default, without a command and start the job in-pty no qrsh qlogin

a pty, with a command starts the job without a pty.qrsh

 – This option presents output on the scheduling process. is mainly intended for debugging purposes and is-verbose -verbose

switched off by default.

http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/Managing+Parallel+Environments#ManagingParallelEnvironments-indexterm819

Transparent Job Distribution With qtcsh

 is a fully compatible replacement for the widely known and used UNIX C shell derivative . is built around . See theqtcsh tcsh qtcsh tcsh

information that is provided in for details on the involvement of .$SGE_ROOT/3rd_party tcsh

qtcsh provides a command shell with the extension of transparently distributing execution of designated applications to suitable and lightly
loaded hosts that use the Grid Engine system. The configuration files define the applications to execute remotely and the requirements.qtask

that apply to the selection of an execution host.

These applications are transparent to the user and are submitted to the Grid Engine system through the facility. provides standardqrsh qrsh

output, error output, and standard input handling as well as terminal control connection to the remotely executing application.

Three noticeable differences between running such an application remotely and running the application on the same host as the shell are:

The remote host might be more powerful, lower-loaded, and have required hardware and software resources installed.
A small delay is incurred by the remote startup of the jobs and by their handling through the Grid Engine system.
Administrators can restrict the use of resources through interactive jobs (qrsh) and thus through . If not enough suitableqtcsh

resources are available for an application to be started through , or if all suitable systems are overloaded, the implicit qrsh qrsh

submission fails. A corresponding error message is returned, such as .Not enough resources ... try later

In addition to the standard use, is a suitable platform for third-party code and tool integration. The single-application execution form of qtcsh

 is . The use of this form of inside integration environments presents a persistent interface that almostqtcsh qtcsh -c app-name qtcsh

never needs to be changed. All the required application, tool, integration, site, and even user-specific configurations are contained in
appropriately defined files. A further advantage is that this interface can be used in shell scripts, in C programs, and even in Java.qtask

applications.

qtcsh Usage

The invocation of is exactly the same as for . extends by providing support for the file and by offering a setqtcsh tcsh qtcsh tcsh .qtask

of specialized shell built-in modes.

The file is defined as follows. Each line in the file has the following format:.qtask

% [!]<app-name> <qrsh-options>

The optional leading exclamation mark () defines the precedence between conflicting definitions in a global cluster file and the! .qtask

personal file of the user. If the exclamation mark is missing in the global cluster file, a conflicting definition in the user file.qtask qtcsh

overrides the definition in the global cluster file. If the exclamation mark is in the global cluster file, the corresponding definition cannot be
overridden.

app-name specifies the name of the application that is submitted to the Grid Engine system for remote execution. The application name must
appear in the command line exactly as the application is defined in the file. If the application name is prefixed with a path name, a local.qtask

binary is addressed. No remote execution is intended.

qrsh-options specifies the options to the facility to use. These options define resource requirements for the application.qrsh

csh aliases are expanded before a comparison with the application names is performed. The applications intended for remote execution can
also appear anywhere in a command line, in particular before or after standard I/O redirections.qtcsh

The following examples demonstrate the syntax:

.qtask file
netscape -v DISPLAY=myhost:0
grep -l h=filesurfer

Given this file, the following command lines:.qtask qtcsh

netscape
~/mybin/netscape
cat very_big_file | grep pattern | sort | uniq

1.
2.
3.

Result in:

qrsh -v DISPLAY=myhost:0 netscape
~/mybin/netscape
cat very_big_file | qrsh -l h=filesurfer grep pattern | sort | uniq

qtcsh can operate in different modes, influenced by switches that can be set on or off:

Local or remote execution of commands. Remote is the default.
Immediate or batch remote execution. Immediate is the default.
Verbose or nonverbose output. Nonverbose is the default.

The setting of these modes can be changed using option arguments of at start time or with the shell built-in command atqtcsh qrshmode

runtime. See the man page for more information.(1)qtcsh

Parallel Makefile Processing With qmake

 is a replacement for the standard UNIX facility. extends by enabling the distribution of independent stepsqmake make qmake make make

across a cluster of suitable machines. is built around the popular GNU-make facility . See the information that is provided in qmake gmake

 for details on the involvement of .$SGE_ROOT/3rd_party gmake

To ensure that a distributed process can run to completion, does the following:make qmake

Allocates the required resources in a way analogous to a parallel job.
Manages this set of resources without further interaction with the scheduling.
Distributes steps as resources become available, using the facility with the option.make qrsh -inherit

qrsh provides standard output, error output, and standard input handling as well as terminal control connection to the remotely executing
 step. There are only three noticeable differences exist between executing a procedure locally and using :make make qmake

The parallelization of the process will speed up significantly, provided that individual steps have a certain duration and thatmake make

enough independent steps exist to process.make

In the steps to be started up remotely, an implied small overhead exists that is caused by and the remote execution.make qrsh

To take advantage of the step distribution of , the user must specify as a minimum the degree of parallelization. That is,make qmake

the user must specify the number of concurrently executable steps. In addition, the user can specify the resource characteristicsmake

required by the steps, such as available software licenses, machine architecture, memory, or CPU-time requirements.make

The most common use of is the compilation of complex software packages. However, compilation might not be the major application for make

. Program files are often quite small as a matter of good programming practice. Therefore, compilation of a single program file, which isqmake

a single step, often takes only a few seconds. Furthermore, compilation usually implies significant file access. Nested include files canmake

cause this problem. File access might not be accelerated if done for multiple steps in parallel because the file server can become amake

bottleneck. Such a bottleneck effectively serializes all the file access. Therefore, the compilation process sometimes cannot be accelerated in a
satisfactory manner.

Other potential applications of are more appropriate. An example is the steering of the interdependencies and the workflow of complexqmake

analysis tasks through makefiles. Each step in such environments is typically a simulation or data analysis operation with nonnegligiblemake

resource and computation time requirements. A considerable acceleration can be achieved in such cases.

qmake Usage

The command-line syntax of looks similar to the syntax of :qmake qrsh

% qmake [-pe <pe-name pe-range>][<options>] \
 -- [<gnu-make-options>][<target>]

Note
The option is also supported by , as described later in this section.-inherit qmake

http://gridengine.sunsource.net/manpages.html

1.
2.

3.

4.

Pay special attention to the use of the option and its relation to the option. You can use both options to express the amount of-pe gmake -j

parallelism to be achieved. The difference is that provides no possibility with to specify something like a parallel environment to use.gmake -j

Therefore, assumes that a default environment for parallel makes is configured that is called . Furthermore, 's allows forqmake make gmake -j

no specification of a range, but only for a single number. interprets the number that is given with as a range of . By contrast, qmake -j 1n -pe

permits the detailed specification of all these parameters. Consequently the following command line examples are identical:

% qmake -- -j 10
% qmake -pe make 1-10 --

The following command lines cannot be expressed using the option:-j

% qmake -pe make 5-10,16 --
% qmake -pe mpi 1-99999 --

Apart from the syntax, supports two modes of invocation: interactively from the command line without the option, or withinqmake -inherit

a batch job with the option. These two modes start different sequences of actions:-inherit

Interactive – When is invoked on the command line, the process is implicitly submitted to the Grid Engine system with qmake make

. The process is as follows:qrsh

The resource requirements that are specified in the command line are taken into account.qmake

The Grid Engine system selects a for the execution of the parallel job that is associated with the parallel master machine make

job.
The Grid Engine system starts the procedure. The procedure must start there because the process can bemake make

architecture-dependent. The required architecture is specified in the command line.qmake

The process on the master machine delegates execution of individual steps to the other hosts that are allocatedqmake make

for the job. The steps are passed to through the parallel environment hosts file.qmake

Batch – In this case, appears inside a batch script with the option. If the option is not present, a new jobqmake -inherit -inherit

is spawned, as described in the first case earlier. This results in making use of the resources already allocated to the job intoqmake

which is embedded. uses directly to start steps. When calling in batch mode, theqmake qmake qrsh -inherit make qmake

specification of resource requirements, the option and the option are ignored.-pe -j

Note
Single CPU jobs also must request a parallel environment:

qmake -pe make 1 --

If no parallel execution is required, call with command-line syntax without Grid Engine system options and without . This qmake gmake --

 command behaves like .qmake gmake

See the man page for further details.(1)qmake

 How to Submit a Simple Job From the Command Line

Before You Begin

Note
If you installed the Sun Grid Engine software under an unprivileged user account, you must log in as that user to be able to
run jobs. See for details.Installation Accounts

Before you run any Grid Engine system command, you must first set your executable search path and other environment conditions properly.

Steps

http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/Planning+the+Installation#PlanningtheInstallation-InstallationAccounts

1.

2.

3.

From the command line, type one of the following commands:
If you are using or as your command interpreter, type the following:csh tcsh

% source $SGE_ROOT/$SGE_CELL/common/settings.csh

$SGE_ROOT specifies the location of the root directory of the Grid Engine system. This directory was specified at the
beginning of the installation procedure.

If you are using , , or as your command interpreter, type the following:sh ksh bash

. $SGE_ROOT/$SGE_CELL/common/settings.sh

Note
You can add these commands to your , , or files, whichever is appropriate. By.login .cshrc .profile

adding these commands, you guarantee proper settings for all interactive session you start later.

Submit a simple job script to your cluster by typing the following command:

% qsub simple.sh

The command assumes that is the name of the script file, and that the file is located in your current working directory. simple.sh

You can find the following job in the file .$SGE_ROOT/examples/jobs/simple.sh

#!/bin/sh
#
#
(c) 2004 Sun Microsystems, Inc. Use is subject to license terms.

This is a simple example of a SGE batch script

request Bourne shell as shell jobfor
#$ -S /bin/sh

#
print date and time
date
Sleep 20 secondsfor
sleep 20
print date and time again
date

If the job submits successfully, the command responds with a message similar to the following example:qsub

your job 1 ('simple.sh') has been submitted

Type the following command to retrieve status information about your job.

% qstat

You should receive a status report that provides information about all jobs currently known to the Grid Engine system. For each job, the
status report lists the following items:

3.

1.

2.

Job ID, which is the unique number that is included in the submit confirmation
Name of the job script
Owner of the job
State indicator; for example, means runningr

Submit or start time
Name of the queue in which the job runs

If produces no output, no jobs are actually known to the system. For example, your job might already have finished.qstat

You can control the output of the finished jobs by checking their and redirection files. By default, these files are generated instdout stderr

the job owner's home directory on the host that ran the job. The names of the files are composed of the job script file name with a .o
extension for the file and a extension for the file, followed by the unique job ID. The and files of yourstdout .e stderr stdout stderr

job can be found under the names and respectively. These names are used if your job was the first eversimple.sh.o1 simple.sh.e1

executed in a newly installed Grid Engine system.

 How to Submit a Simple Job With QMON

Before You Begin

Note
If you installed the Sun Grid Engine software under an unprivileged user account, you must log in as that user to be able to
run jobs. See for details.Installation Accounts

A more convenient way to submit and control jobs and of getting an overview of the Grid Engine system is the graphical user interface QMON.
Among other facilities, QMON provides a job submission dialog box and a Job Control dialog box for the tasks of submitting and monitoring
jobs.

Steps

Type the following command to launch QMON:

% qmon

During startup, a message window appears, and then the QMON Main Control window appears.

Click the Job Control button, and then click the Submit Jobs button, as shown below.

Tip
The button names, such as Job Control, are displayed when you rest the mouse pointer over the buttons.

http://wikis.sun.com/display/gridengine62u5/Planning+the+Installation#PlanningtheInstallation-InstallationAccounts

2.

3.

The Job Control and Submit Job dialog boxes appear.

In the Submit Job dialog box, click the icon at the right of the Job Script field.

The Select a File dialog box appears.

3.

4.

5.

6.

Select your script file.
For example, select the file that was used in the command line example. simple.sh

Click OK to close the Select a File dialog box.

On the Submit Job dialog box, click Submit.
After a few seconds, you should be able to monitor your job on the Job Control dialog box. First you see your job on the Pending Jobs
tab. Once the job starts running, the job quickly moves to the Running Jobs tab.

6.

1.

2.

 How to Submit an Extended Job From the Command Line
To submit the extended job request that is shown in from the command line, type the followingFigure – Extended Job Submission Example
command:

% qsub -N Flow -p -111 -P devel -a 200404221630.44 -cwd \
 -S /bin/tcsh -o flow.out -j y flow.sh big.data

 How to Submit an Extended Job With QMON
Click the Job Control button in the QMON Main Control window.
The Job Control dialog box appears.

Select a pending job and and click the Submit button.
The Submit Job dialog box appears. See the example below.
The General tab of the Submit Job dialog box enables you to configure the following parameters for an extended job:

Prefix – A prefix string that is used for script-embedded submit options. See for details.Active Comments
Job Script – The job script to use. Click the icon at the right of the Job Script field to open a file selection box.
Job Tasks – The task ID range for submitting array jobs. See for details.Submitting Array Jobs
Job Name – The name of the job. A default is set after you select a job script.
Job Args – Arguments to the job script.
Priority – A counting box for setting the job's initial priority This priority ranks a single user's jobs. Priority tells the scheduler
how to choose among a single user's jobs when several of that user's jobs are in the system simultaneously.

http://wikis.sun.com/display/gridengine62u5/Submitting+Batch+Jobs#SubmittingBatchJobs-i999081

2.

Note
To enable users to set the priorities of their own jobs, the administrator must enable priorities with the
weight_priority parameter of the scheduler configuration. For more information, see .Managing Policies

Job Share – Defines the share of the job's tickets relative to other jobs. The job share influences only the share tree policy and
the functional policy.
Start At – The time at which the job is considered eligible for execution. Click the icon at the right of the Start At field to open
a dialog box.
Project – The project to which the job is subordinated. Click the icon at the right of the Project field to select among the
available projects.
Current Working Directory – A flag that indicates whether to execute the job in the current working directory. Use this flag
only for identical directory hierarchies between the submit host and the potential execution hosts.
Shell – The command interpreter to use to run the job script. See for details. Click theHow a Command Interpreter Is Selected
icon at the right of the Shell field to open a dialog box. Enter the command interpreter specifications of the job.
Merge Output – A flag indicating whether to merge the job's standard output and standard error output together into the
standard output stream.
stdout – The standard output redirection to use. See for details. A default is used if nothing is specified.Output Redirection
Click the icon at the right of the stdout field to open a dialog box. Enter the output redirection alternatives.
stderr – The standard error output redirection to use, similar to the standard output redirection.
stdin – The standard input file to use, similar to the standard output redirection.
Request Resources – Click this button to define the resource requirement for your job. If resources are requested for a job, the
button changes color.
Restart depends on Queue – Click this button to define whether the job can be restarted after being aborted by a system crash
or similar events. This button also controls whether the restart behavior depends on the queue or is demanded by the job.
Notify Job – A flag that indicates whether the job is to be notified by or by signals if the job is about to beSIGUSR1 SIGUSR2

suspended or canceled.
Hold Job – A flag that indicates either a user hold or a job dependency is to be assigned to the job. The job is not eligible for
execution as long as any type of hold is assigned to the job. See for more details. To restrict aMonitoring and Controlling Jobs
hold, enter a specific range of tasks for an array job in the Hold Job field. For more information, see .Submitting Array Jobs
Start Job Immediately – A flag that forces the job to be started immediately, if possible, or to be rejected. Jobs are not queued
if this flag is selected.
Job Reservation – A flag that specifies which resources should be reserved for a job. For more information, see Resource

. Reservation and Backfilling
The buttons at the right side of the Submit Job dialog box enable you to start various actions:
Submit – Submit the currently specified job.
Edit – Edit the selected script file in an X terminal, using either or the editor defined by the environment variable.vi EDITOR

Clear – Clear all settings in the Submit Job dialog box, including any specified resource requests.
Reload – Reload the specified script file, parse any script-embedded options, parse default settings, and discard intermediate
manual changes to these settings. For more information, see and . This action is theActive Comments Default Request Files
equivalent to a Clear action with subsequent specifications of the previous script file. The option has an effect only if a script
file is already selected.
Save Settings – Save the current settings to a file. Use the file selection box to select the file. The saved files can either be
loaded later or be used as default requests. For more information, .Default Request Files
Load Settings – Load settings previously saved with the Save Settings button. The loaded settings overwrite the current
settings.
Done – Closes the Submit Job dialog box.

Example – Extended Job Example

The following figure shows the Submit Job dialog box with most of the parameters set.

Figure – Extended Job Submission Example

http://wikis.sun.com/display/gridengine62u5/Managing+Policies
http://wikis.sun.com/display/gridengine62u5/Submitting+Batch+Jobs#SubmittingBatchJobs-i999021
http://wikis.sun.com/display/gridengine62u5/Submitting+Batch+Jobs#SubmittingBatchJobs-i999036
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-i998730
http://wikis.sun.com/display/gridengine62u5/Managing+the+Scheduler#ManagingtheScheduler-eoqma
http://wikis.sun.com/display/gridengine62u5/Managing+the+Scheduler#ManagingtheScheduler-eoqma
http://wikis.sun.com/display/gridengine62u5/Submitting+Batch+Jobs#SubmittingBatchJobs-i999081

The parameters of the job configured in the example are:

The job has the script file , which must reside in the working directory of QMON.flow.sh

The job is called .Flow

The script file takes the single argument .big.data

The job starts with priority .3
The job is eligible for execution not before 4:30.44 AM of the 22th of April in the year 2004.
The project definition means that the job is subordinated to project .crash

The job is executed in the submission working directory.
The job uses the command interpreter.tcsh

Standard output and standard error output are merged into the file , which is created in the current working directory.flow.out

 How to Submit an Advanced Job From the Command Line
To from the command line, type the followingsubmit the advanced job request that is shown in Figure – Advanced Job Submission Example
command:

% qsub -N Flow -p -111 -P devel -a 200012240000.00 -cwd \
 -S /bin/tcsh -o flow.out -j y -pe mpi 4-16 \
 -v SHARED_MEM=TRUE,MODEL_SIZE=LARGE \
 -ac JOB_STEP=preprocessing,PORT=1234 \
 -A FLOW -w w -m s,e -q big_q\
 -M me@myhost.com,me@other.address \
 flow.sh big.data

Specifying the Use of a Script or a Binary

http://wikis.sun.com/display/gridengine62u5/How+to+Submit+an+Advanced+Job+With+QMON#HowtoSubmitanAdvancedJobWithQMON-i1001441

1.
2.
3.

1.

2.

Note
Submitting a command as a script can add a number of operations to the submission process and have a negative impact on
performance. This impact can be significant if you have short running jobs and big job scripts. If job scripts are available on
the execution nodes, i.e. via NFS, binary submission may be a better choice.

You can use the submit option to indicate explicitly whether the command should be treated as a binary or a script:-b n|y

To specify that the command should be treated as , use the option with the command.a binary or a script -b y qrsh

To specify the command should be treated , use the option with the command.only as a script -b n qsub

For more information, see the man page.(1)qsub

Default Request Files

The preceding command shows that advanced job requests can be complex, especially if similar requests need to be submitted frequently. To
avoid these problems, you can embed options in the script files, or use . For more information, see .qsub default request files Active Comments

The cluster administrator can set up a global default request file for all Grid Engine system users. Users can define a private default request file
located in their home directories. In addition, users can create application specific default request files.

If more than one of these files are available, the files are merged into one default request, with the following order of precedence:

Application-specific default request file
General private default request file
Global default request file

Default request files contain the options to apply by default to the jobs in one or more lines. The location of the global cluster defaultqsub

request file is / / . The private general default request file is located under . The$SGE_ROOT cell common/sge_request $HOME/.sge_request

application-specific default request files are located under .$cwd/.sge_request

Script embedding and the command line have higher precedence than the default request files. Therefore, script embedding overridesqsub

default request file settings. The command line options can override these settings again.qsub

To discard any previous settings, use the command in a default request file, in embedded script commands, or in the qsub -clear qsub

command line.

Example – Private Default Request File

Here is an example of a private default request file:

-A myproject -cwd -M me@myhost.com -m b e
-r y -j y -S /bin/ksh

Unless overridden, the following is true for all of this user's jobs:

The account string is myproject
The jobs execute in the current working directory
Mail notification is sent to at the beginning and at the end of the jobsme@myhost.com

The standard output and standard error output are merged
The is used as command interpreterksh

 How to Submit an Advanced Job With QMON
Click the Job Control button in the QMON Main Control window.
The Job Control dialog box appears.

Select a pending job and and click the Qalter button.
The Submit Job dialog box appears.

http://gridengine.sunsource.net/manpages.html
http://wikis.sun.com/display/gridengine62u5/Submitting+Batch+Jobs#SubmittingBatchJobs-i999081

2.

3. Click the Advanced Tab, which shown below.

The Advanced tab of the Submit Job dialog box enables you to define the following additional parameters:

Parallel Environment – A list of available, configured parallel environments.
Environment – A set of environment variables to set for the job before the job runs. Environment variables can be taken from
QMON`s runtime environment, or you can define your own environment variables.
Context – A list of name/value pairs that can be used to store and communicate job-related information. This information is
accessible anywhere from within a cluster. You can modify context variables from the command line with the , , and -ac -dc

 options to , , , , and .-sc qsub qrsh qsh qlogin qalter

Checkpoint Object – The checkpointing environment to use if checkpointing the job is desirable and suitable. See Using Job
 for details.Checkpointing

Account – An account string to associate with the job. The account string is added to the accounting record that is kept for
the job. The accounting record can be used for later accounting analysis.
Verify Mode – The Verify flag determines the consistency checking mode for your job. To check for consistency of the job
request, the Grid Engine system assumes an empty and unloaded cluster. The system tries to find at least one queue in which
the job could run. Possible checking modes are as follows:

Skip – No consistency checking at all.
Warning – Inconsistencies are reported, but the job is still accepted. Warning mode might be desirable if the cluster
configuration should change after the job is submitted.
Error – Inconsistencies are reported. The job is rejected if any inconsistencies are encountered.
Just verify - The job is not submitted. An extensive report is generated about the suitability of the job for each host
and queue in an empty cluster.
Poke – The job is not submitted. An extensive report is generated about the suitability of the job for each host and
queue in the cluster with all resource utilizations in place.

Advance Reservation – A list of available, configured advance reservations.
JSV URL – Access to your directory to select from configured server JSV scripts.
Mail – The events about which the user is notified by email. The events' start, end, abort, and suspend are currently defined for
jobs.
Mail To – A list of email addresses to which these notifications are sent. Click the icon at the right of the Mail To field to open
a dialog box for defining the mailing list.
Hard Queue List, Soft Queue List – A list of queue names that are requested to be the mandatory selection for the execution of
the job. The Hard Queue List and the Soft Queue List are treated identically to a corresponding resource requirement.
Master Queue List – A list of queue names that are eligible as master queue for a parallel job. A parallel job is started in the
master queue. All other queues to which the job spawns parallel tasks are called slave queues.
Job Dependencies – A list of IDs of jobs that must finish before the submitted job can be started. The newly created job
depends on completion of those jobs.
Hold Array Dependencies – A list of job IDs/and/or job names and sub-tasks. Each sub-task of the submitted job is not eligible
for execution unless the corresponding sub-tasks of all jobs referenced in the comma-separated job ID and/or job name list
have completed.

http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-indexterm581
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-indexterm581

3.

Deadline – The deadline initiation time for deadline jobs. Deadline initiation defines the point in time at which a deadline job
must reach maximum priority to finish before a given deadline. To determine the deadline initiation time, subtract an estimate
of the running time, at maximum priority, of a deadline job from its desired deadline time. Click the icon at the right of the
Deadline field to open the dialog box that enables you to set the deadline.

Note
Not all users are allowed to submit deadline jobs. Ask your system administrator if you are permitted to
submit deadline jobs. Contact the cluster administrator for information about the maximum priority that is
given to deadline jobs.

 Monitoring Hosts

Task User Interface Description

How to Monitor Hosts CLI or QMON Learn how to monitor hosts.

 How to Monitor Hosts From the Command Line

Using qconf

To configuration, type the following command:display an execution host

% qconf -se <hostname>

The option (show execution host) shows the configuration of the specified execution host as defined in .-se host_conf

To , type one of the following command:display an execution host list

% qconf -sel

The option (show execution host list) displays a list of hosts that are configured as execution hosts.-sel

For more information, see the man page.(1)qconf

Using qhost

To from the command line, type the following command:monitor execution hosts

% qhost

This command produces output that is similar to the following example:

http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Hosts+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Hosts+With+QMON
http://gridengine.sunsource.net/manpages.html

1.

2.

HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
grid1 sol-sparc64 2 0.27 2.0G 256.0M 8.0G 0.0
gridengine2 sol-amd64 4 0.00 3.9G 421.0M 2.0G 0.0
gridengine5 sol-amd64 4 0.00 3.9G 488.0M 7.9G 0.0
gridengine6 sol-amd64 4 0.07 3.9G 2.6G 4.0G 0.0

See the man page for a description of the output format and for more options.(1)qhost

 How to Monitor Hosts With QMON
Click the Queue Control button in the QMON Main Control window.
The Cluster Queues dialog box appears.

Click the Hosts tab.
The Hosts tab provides a quick overview of all hosts that are available for the cluster.

Hosts Status

Each row in the hosts table represents one host. For each host, the table lists the following information:

Host – Name of the host

http://gridengine.sunsource.net/manpages.html

Arch – Architecture of the host
#CPU – Number of processors
LoadAvg – Load average of the host
%CPU – LoadAvg / (#CPU * 100)
MemUsed – Used Memory
MemTotal – Total Memory
SwapUsed – Used Swap Memory
SwapTotal – Total Swap Memory
VirtUsed – Virtual Used Memory
VirtTotal – Virtual Total Memory

 Monitoring and Controlling Jobs
After you , you need to monitor and control them. The following page provides information about monitoring and controlling jobs.submit jobs

Note
Only the job owner or Grid Engine managers and operators can suspend and resume jobs, delete jobs, hold back jobs, modify
job priority, and modify attributes. See .Managers, Operators, and Owners

Task User Interface Description

How to Monitor Jobs CLI or QMON Learn how to monitor jobs.

How to Monitor Jobs by Email CLI or QMON Learn how to monitor jobs by email.

How to Control Jobs CLI or QMON Learn how to control jobs.

 How to Monitor Jobs From the Command Line
Use the command to perform the following monitoring functions:qstat

To , type the following command:display a list of jobs with no queue status information

qstat

The purpose of most of the columns should be self-explanatory. The column, however, contains single character codes with thestate

following meaning: for running, for suspended, for queued, and for waiting.r s q w

To , type the following command:display summary information on all queues and the queued job list

qstat -f

The display is divided into the following two sections:

Available Queues - This section displays the status of all available queues. The first line of the queue section defines the
meaning of the columns with respect to the queues that are listed. The queues are separated by horizontal lines. If jobs run in
a queue, the job names appear below the associated queue in the same format as in the command in its first form. Theqstat

columns of the queue description provide the following information:
qtype – Queue type. Queue type is either (batch) or (interactive).B I

used/free – Count of used and free job slots in the queue.
states – State of the queue. See the man page for detailed information about queue states.(1)qstat

Pending Jobs – This section shows the status of the job spool area. The pending jobs in the second outputsge_qmaster

http://wikis.sun.com/display/gridengine62u5/Submitting+Jobs
http://wikis.sun.com/display/gridengine62u5/Displaying+User+Properties#DisplayingUserProperties-i999582
http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Jobs+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Jobs+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Jobs+by+Email+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Jobs+by+Email+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Control+Jobs+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Control+Jobs+With+QMON
http://gridengine.sunsource.net/manpages.html

section are also listed as in `s first form.qstat

To , type the following command:display current job usage and ticket information for a job

{{qstat -ext}}

This command contains details such as up-to-date job usage and tickets assigned to a job. The following information is displayed:

The usage and ticket values assigned to a job, shown in the following columns:
cpu/mem/io – Currently accumulated CPU, memory, and I/O usage.
tckts – Total number of tickets assigned to the job.
ovrts – Override tickets assigned through .qalter -ot

otckt – Tickets assigned through the override policy.
ftckt – Tickets assigned through the functional policy.
stckt – Tickets assigned through the share-based policy.
Share - Current Resource share that each job has with respect to the usage generated by all jobs in the cluster.

The deadline initiation time in the column deadline, if applicable.

Additional options to the command enhance the functionality. Use the option to display the resource requirements of submittedqstat -r

jobs. Furthermore, the output can be restricted to a certain user or to a specific queue. You can use the option to specify resource-l

requirements, as described in , for the command. If resource requirements are used, only those queues,Defining Resource Requirements qsub

and the jobs that are running in those queues, are displayed that match the resource requirement specified by .qstat

Note
The command has been enhanced so that the administrator and the user may define files that can contain usefulqstat

options. See the man page. A cluster-wide file may be placed under sge_qstat(5) sge_qstat

. The user private file is processed under the$xxQS_NAME_Sxx_ROOT/$xxQS_NAME_Sxx_CELL/common/sge_qstat

location . The home directory request file has the highest precedence, then the cluster global file. You$HOME/.sge_qstat

can use the command line to override the flags contained in a file.

See the man page for a detailed explanation of the output format.(1)qstat qstat

The following examples show output from the and commands.qstat qstat -f

Example – qstat -f Output

queuename qtype used/free load_avg arch states

dq BIP 0/1 99.99 sun4 au

durin.q BIP 2/2 0.36 sun4
 231 0 hydra craig r 07/13/96 20:27:15 MASTER
 232 0 compile penny r 07/13/96 20:30:40 MASTER

dwain.q BIP 3/3 0.36 sun4
 230 0 blackhole don r 07/13/96 20:26:10 MASTER
 233 0 mac elaine r 07/13/96 20:30:40 MASTER
 234 0 golf shannon r 07/13/96 20:31:44 MASTER

fq BIP 0/3 0.36 sun4

##

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS -

##

 236 5 word elaine qw 07/13/96 20:32:07

 235 0 andrun penny qw 07/13/96 20:31:43

Example – qstat Output

http://wikis.sun.com/display/gridengine62u5/Defining+Resource+Requirements
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html

job-ID prior name user state submit/start at queue function
231 0 hydra craig r 07/13/96 durin.q MASTER
 20:27:15
232 0 compile penny r 07/13/96 durin.q MASTER
 20:30:40
230 0 blackhole don r 07/13/96 dwain.q MASTER
 20:26:10
233 0 mac elaine r 07/13/96 dwain.q MASTER
 20:30:40
234 0 golf shannon r 07/13/96 dwain.q MASTER
 20:31:44
236 5 word elaine qw 07/13/96
 20:32:07
235 0 andrun penny qw 07/13/96 20:31:43

 How to Monitor Jobs With QMON
To monitor jobs with QMON, click the Job Control button in the QMON Main Control window.
The Job Control dialog box appears, as shown below.

How to Get Additional Information About Jobs With the QMON Object Browser

You can use the QMON Object Browser to quickly retrieve additional information about jobs without having to customize the Job Control dialog
box, as explained in .How to Monitor Jobs With QMON

To display information about jobs using the Object Browser, use one of the following methods:

From the Job Control dialog box, move the pointer over a job name.
From the Browser dialog box, click Job.

http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Jobs+With+QMON

1.

2.

3.

4.

 How to Monitor Jobs by Email
From the , type the following command with appropriate arguments.command line

% qsub -m <arguments>

The command requests email to be sent to the user who submitted a job or to the email addresses specified by the flag if certainqsub -m -M

events occur. See the man page for a description of the flags. An argument to the option specifies the events. The following(1)qsub -m

arguments are available:

b – Send email at the beginning of the job.
e – Send email at the end of the job.
a – Send email when the job is rescheduled or aborted For example, by using the command.qdel

s – Send email when the job is suspended.
n – Do not send email. is the default.n

Use a string made up of one or more of the letter arguments to specify several of these options with a single option. For example, -m -m be

sends email at the beginning and at the end of a job.

 How to Monitor Jobs by Email With QMON
Click the Job Control button in the QMON Main Control window.
The Job Control dialog box appears.

Select a pending job and and click the Qalter button.
The Submit Job dialog box appears, as shown below.

Select the Advanced Tab.

http://gridengine.sunsource.net/manpages.html

3.

4.

1.

Click on the icon left of the Mail To field to select or add email addresses of the user or users who are responsible for monitoring jobs.

You can also configure this parameter at the time of job submission using the Submit Job dialog box.

 How to Control Jobs From the Command Line

In order to delete, suspend, or resume a job, you must be the owner of the job or a Grid Engine manager or operator. For
more information, see .Users and User Categories

Use and in the following ways to control jobs from the command line:qdel qmod

To , regardless of whether a job is running or spooled, type the following command:delete a job

qdel <job-id>

To , type the following command:suspend a job that is already running

qmod -sj <job-id>

To , type the following command:restart a suspended job

qmod -usj <job-id>

To retrieve a number, use . For more information, see .job_id qstat How to Monitor Jobs From the Command Line

If an execution daemon is unreachable, you can use the (force) option with both commands to register a job status change at master-f

daemon. The option is intended for use only by an administrator. However, In the case of , users can force deletion of their own jobs if-f qdel

the flag in the cluster configuration entry is set. See the man page for moreENABLE_FORCED_QDEL qmaster_params (5)sge_conf

information.

For more information, see the man page.qmod(1)

 How to Control Jobs With QMON
How to Modify Job Attributes
How to Change Job Priority
How to Put Jobs and Array Job Tasks on Hold
How to Force Jobs
How to Verify Job Consistency
How to Use the Why? Button to Get Information About Pending Jobs
How to Clear Error States
How to Filter the Job List
How to Customize the Job Control Display

Click the Job Control button in the QMON Main Control window.
The Job Control dialog box appears, as shown below.

http://wikis.sun.com/display/gridengine62u5/Users+and+User+Categories
http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Jobs+From+the+Command+Line
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html

1.

2.

a.

1.

You can perform the following tasks from the Job Control dialog box:

Note
To select jobs, use the following mouse and key combinations:

To select multiple noncontiguous jobs, hold down the Control key and click two or more jobs.
To select a contiguous range of jobs, hold down the Shift key, click the first job in the range, and
then click the last job in the range.
To toggle between selecting a job and clearing the selection, click the job while holding down the
Control key.

To monitor jobs, click the Pending Jobs, Running Jobs, or Finished Jobs tab.
To refresh the Job Control display, click the Refresh button to force an update. QMON then uses a polling scheme to retrieve
the status of the jobs from . sge_qmaster

To modify job attributes, select a pending or running job and then click the Qalter button. For more information, see How to
.Modify Job Attributes

To change job priority, select a pending or running job and then press the Priority button. For more information, see How to
.Change Job Priority

To put a job or an array task on hold, select a pending job and then press the Hold button. For more information, see How to
.Put Jobs and Array Job Tasks on Hold

To force a job, first select a pending job or running job, next select the Force option and then click the Suspend, Resume, or
Delete buttons. For more information, see .How to Force Jobs
To verify job consistency, select a pending job and then click the Qalter button. For more information, see How to Verify Job

.Consistency
To get information about pending jobs using the Why? button, select a pending job and then click the Why? button. For more
information, see .How to Use the Why? Button to Get Information About Pending Jobs
To clear error states, select a pending job and then click the Clear Error button. For more information, see How to Clear Error

.States
To filter the job list, click the Customize button. For more information, see .How to Filter the Job List
To customize the job control display, click the Customize button. For more information, see How to Customize the Job Control

.Display

How to Modify Job Attributes

http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoModifyJobAttributes
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoModifyJobAttributes
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoChangeJobPriority
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoChangeJobPriority
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoPutJobsandArrayJobTasksonHold
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoPutJobsandArrayJobTasksonHold
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoForceJobs
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoVerifyJobConsistency
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoVerifyJobConsistency
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoUsetheWhy%3FButtontoGetInformationAboutPendingJobs
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoClearErrorStates
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoClearErrorStates
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoFiltertheJobList
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoCustomizetheJobControlDisplay
http://wikis.sun.com/display/gridengine62u5/Monitoring+and+Controlling+Jobs#MonitoringandControllingJobs-HowtoCustomizetheJobControlDisplay

1.

2.

3.

1.

2.

1.

2.

1.

Click a pending or running job on the and Job Control dialog box and then click the Qalter button.
The Submit Job dialog box appears. All the entries of the dialog box correspond to the attributes of the job that were defined when the
job was submitted.

Note
Entries that cannot be changed are grayed out.

Edit available entries appropriately.

Click the Qalter button, a substitute for the Submit button on the Submit Job dialog box, to register changes with the Grid Engine
system.

How to Change Job Priority

Select a pending or running job on the Job Control dialog box and then click the Priority button.
The priority dialog box appears, as shown below. This dialog box enables you to change the priority of selected pending or running
jobs. The priority ranks a single user's jobs among themselves. Priority tells the scheduler how to choose among a single user's jobs
when several jobs are in the system simultaneously.

Enter a new priority for the selected job(s) in the field and then click OK.

How to Put Jobs and Array Job Tasks on Hold

As long as any hold is assigned to a job or an array job task, the job or array job task is not eligible for running.

Note
User holds can be set or reset by the job owner as well as by Grid Engine managers and operators. Operator holds can be set
or reset by managers and operators. System holds can be set or reset by managers only. You can also set or reset holds by
using the , , and commands.qalter qhold qrls

To put a on hold, select a pending job from the Job Control Dialog dialog box, shown above, and click Hold.job
The Set Hold dialog box appears. The Set Hold dialog box enables you to set and reset user, operator, and system holds.
To put on hold, do the following:an array task

Select a pending job from the Job Control dialog box and click Hold.
The Set Hold dialog box appears.
Use the Tasks field to put a hold on particular subtasks of an array job.
The task ID range specified in this field can be a single number, a simple range of the form , or a range with a step size.n-m
For example, the task ID range specified by results in the task ID indexes 2, 4, 6, 8, and 10. This range represents a2-10:2

total of five identical tasks, with the environment variable containing one of the five index numbers. ForSGE_TASK_ID

detailed information about job holds, see the man page.(1)qsub

How to Force Jobs

Only running jobs can be suspended or resumed. Only pending jobs can be rescheduled, held back and modified, in priority as well as in other
attributes.

http://gridengine.sunsource.net/manpages.html

1.

2.

1.

2.

3.

To force jobs, select a job from the Pending Jobs tab or the Running Jobs tab and then select the Force option.

Click the Suspend, Resume, or Delete buttons.

Note
You can force suspending, resuming, and deleting jobs. In other words, you can register these actions with

 without notifying the that controls the jobs. Forcing is useful when the corresponding sge_qmaster sge_execd

 is unreachable, for example, due to network problems.sge_execd

Suspension of a job sends the signal to the process group of the job with the UNIX command. halts the job and noSIGSTOP kill SIGSTOP

longer consumes CPU time. Resumption of the job sends the signal , thereby unsuspending the job. See the man page forSIGCONT (1)kill

your system for more information on signaling processes.

How to Verify Job Consistency

Note
The Verify flag on the Submit Job dialog box has a special meaning when the flag is used in the Qalter mode. You can check
pending jobs for consistency, and you can investigate why jobs are not yet scheduled.

Select a pending job from the Job Control dialog box and and click the Qalter button.

Click the Advanced tab.

Select the desired consistency-checking mode for the Verify flag, and then click Qalter.

Note
The system displays warnings on inconsistencies, depending on the checking mode you select. See [How to Submit Advanced

 and the option on the man page for more information.Jobs With QMON] -w (1)qalter

How to Use the Why? Button to Get Information About Pending Jobs

Note
The Why? button delivers meaningful output only if the scheduler configuration parameter is set to schedd_job_info

. See the man page.true (5)sched_conf

To get information about pending jobs, select a pending job from the Job Control dialog box and click the Why? button.
The Object Browser dialog box appears. As shown below, this dialog box displays a list of reasons that prevented the scheduler from dispatching
the job in its most recent pass.

Note
The displayed scheduler information relates to the last scheduling interval. The information might not be accurate by the time
you investigate why your job was not scheduled.

How to Clear Error States

http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html

1.

2.

To clear error states, select a pending job from the Job Control dialog box and then click the Clear Error button.
This removes an error state from a pending job that failed due to a job-dependent problem. For example, the job might have insufficient
permissions to write to the specified job output file.

Error states appear in red text in the pending jobs list. You should remove jobs only after you correct the error condition, for example, using
. Such error conditions are automatically reported through email if the job requests to send email when the job is aborted. For example,qalter

the job might have been aborted with the command. qsub -m a

How to Filter the Job List

Click the Customize button in the Job Control dialog box.
The Job Customize box appears, as shown below.

Click the Filter Jobs tab.

Example - Filtering the Job List

The following example of the filtering facility selects only jobs that are suitable to be run on the architecture .solaris64

The following figure shows the resulting Running Jobs tab of the Job Control dialog box.

2.

1.

2.

The Job Control dialog box that is shown in the previous figure is also an example of how QMON displays array jobs.

How to Customize the Job Control Display

Click the Customize button on the Job Control dialog box.
The Job Customize dialog box appears.

Click the Select Job Fields tab.
A sample Select Job Fields tab is shown in the following figure.

2.

3.

4.

1.

Use the Job Customize dialog box to configure the set of information to display.
You can select more entries of the job object to be displayed.

Use the Save button on the Job Customize dialog box to store the customizations in the file ..qmon_preferences

This file is located in the user's home directory. By saving your customizations, you redefine the appearance of the Job Control dialog
box.

 Monitoring and Controlling Queues
After you , you need to monitor and control them. This page provides information about monitoring and controlling queues.configure queues

Task User Interface Description

How to Monitor Queues CLI or QMON Learn how to monitor queues.

How Control Queues CLI or QMON Learn how to control queues.

 How to Monitor Queues With QMON
Click the Queue Control button in the QMON Main Control window.
The Cluster Queues dialog box appears, as shown below.

http://wikis.sun.com/display/gridengine62u5/Configuring+Queues
http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Queues+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Monitor+Queues+With+QMON
http://wikis.sun.com/display/gridengine62u5/How+to+Control+Queues+From+the+Command+Line
http://wikis.sun.com/display/gridengine62u5/How+to+Control+Queues+With+QMON

1.

2.

Click the Cluster Queues tab.
The Cluster Queues tab provides a quick overview of all cluster queues that are defined for the cluster.

Note
Information displayed in the Cluster Queues dialog box is updated periodically. Click Refresh to force an update.

 How to Control Queues From the Command Line

Suspending and resuming queues as well as disabling and enabling queues requires queue owner permission, manager
permission, or operator permission. For more information, see .Users and User Categories

You can use to control queues in the following ways:qmod

To , type the following command:suspend a queue and any active jobs on that queue

qmod -sq <q-name>,...

To , type the following command:unsuspend a queue and any active jobs on that queue

http://wikis.sun.com/display/gridengine62u5/Users+and+User+Categories

qmod -usq <q-name>,...

To , type the following command:disable a queue and stop any jobs from being dispatched to the queue

qmod -d <q-name>,...

To , type the following command:enable a queue

qmod -e <q-name>,...

The option forces registration of the status change in when the corresponding is not reachable, for example,-f sge_qmaster sge_execd

due to network problems.

 Automating Grid Engine Functions Through DRMAA
You can automate Sun Grid Engine functions by writing scripts that run Sun Grid Engine commands and parse the results. However, for more
consistent and efficient results, you can use the C or Java language and the Distributed Resource Management Application API. This section
introduces the DRMAA concept and explains how to use it with the C and Java languages.

The Distributed Resource Management Application API (DRMAA, which is pronounced like "drama") is an Open Grid Forum specification to
standardize job submission, monitoring, and control in Distributed Resource Management Systems (DRMS). The objective of the DRMAA
Working Group was to produce an API that would be easy to learn, easy to implement, and that would enable useful application integrations
with DRMS in a standard way.

The DRMAA specification is language, platform, and DRMS agnostic. A wide variety of systems should be able to implement the DRMAA
specification. To provide additional guidance for DRMAA implementation in specific languages, the DRMAA Working Group also produced
several DRMAA language binding specifications. These specifications define what a DRMAA implementation should resemble in a given
language.

The DRMAA specification is currently at version 1.0. The DRMAA Java Language Binding Specification is also at version 1.0, as is the DRMAA C
Language Binding Specification. Sun Grid Engine provides implementations of both the 1.0 Java language binding and the 1.0 C language
binding.

For more information about the DRMAA 1.0 specification, see the language specific binding specifications on the Open Grid Forum DRMAA
Working Group Web Site

Topic Description

Developing With the C Language Binding Learn how to develop with the C language binding.

Developing With the Java Language Binding Learn how to develop with the java language binding.

 Developing With the C Language Binding

Important Files for the C Language Binding

To use the DRMAA C language binding implementation included with Sun Grid Engine, you need to know where to find the important files. The
most important file is the DRMAA header file that you included from your C application to make the DRMAA functions available to your
application. The DRMAA header file resides in the , where defaults to . For detailed$SGE_ROOT/include/drmaa.h $SGE_ROOT /usr/SGE

http://drmaa.org/wiki/?sfProjectId=proj1076
http://drmaa.org/wiki/?sfProjectId=proj1076
http://wikis.sun.com/display/gridengine62u5/Developing+With+the+C+Language+Binding
http://wikis.sun.com/display/gridengine62u5/Developing+With+the+Java+Language+Binding

reference information about the DRMAA functions, see section 3 of the Sun Grid Engine man pages, located in the directory.$SGE_ROOT/man

To compile and link your application, use the DRMAA shared library at .$SGE_ROOT/lib/$SGE_ARCH/libdrmaa.so

Including the DRMAA Header File

To use the DRMAA functions in your application, every source file that uses a DRMAA function must include the DRMAA header file. To include
the DRMAA header file in your source file, add the following line to your source code:

#include "drmaa.h"

Compiling Your C Application

When you compile your DRMAA application, you need to include some additional compiler directives to direct the compiler and linker to use
DRMAA. The following directions apply to the Sun Studio Compiler Collection and to gcc. These instructions might not apply for other
compilers and linkers. Consult the documentation for your specific compiler and linker products.

You must include the following two directives:

Tell the compiler to include the DRMAA header file by adding the following statement to the compiler command line:

-$SGE_ROOT/include

Tell the linker to include the DRMAA library by adding the following statement to the compiler and/or linker command line:

-ldrmaa

You also need to verify that the directory is included in your library search path. The path is $SGE_ROOT/lib/$SGE_ARCH

 on the Solaris Operating Environment and Linux. The directory is includedLD_LIBRARY_PATH $SGE_ROOT/lib/$SGE_ARCH not
automatically when you set your environment using the or files.settings.sh settings.csh

Example - Compiling Your C Application Using Sun Studio Compiler

The following example shows how you would compile your DRMAA application using the Sun Studio Compiler. The following assumptions apply:

You are using the shell on a Solaris host.csh

Sun Grid Engine is installed in ./sge
The DRMAA application is stored in .app.c

Sample commands would look like the following:

% source /sge/ /common/settings.cshdefault
% cc -I/sge/include -ldrmaa app.c

Running Your C Application

To run your compiled DRMAA application, verify the following:

The directory must be included in the library search path (on the Solaris Operating$SGE_ROOT/lib/$SGE_ARCH LD_LIBRARY_PATH

Environment and Linux). The directory is included automatically when you set your environment using the $SGE_ROOT/lib/$SGE_ARCH not
 or files.settings.sh settings.csh

You must be logged into a machine that is a Sun Grid Engine submit host. If the machine is not a Sun Grid Engine submit host, all DRMAA
function calls will fail, returning .DRMAA_ERRNO_DRM_COMMUNICATION_FAILURE

C Application Examples

The following examples illustrate some application interactions that use the C language bindings. You can find additional examples on the "How
.To" section of the Grid Engine Community Site

Example - Starting and Stopping a Session

Every call to a DRMAA function returns an error code. If everything goes well, that code is . If an error occurs, anDRMAA_ERRNO_SUCCESS

appropriate error code is returned.

Every DRMAA function also takes at least two parameters:

A string to populate with an error message in case of an error
An integer representing the maximum length of the error string

On line 8, the example calls . This function sets up the DRMAA session and must be called before most other DRMAA functions.drmaa_init()

Some functions, like , can be called before , but these functions only provide general information.drmaa_get_contact() drmaa_init()

Any function that performs an action, such as or must be called after returns. If such adrmaa_run_job() drmaa_wait() drmaa_init()

function is called before returns, it will return the error code .drmaa_init() DRMAA_ERRNO_NO_ACTIVE_SESSION

The function creates a session and starts an event client listener thread. The session is used for organizing jobs submitteddmraa_init()

through DRMAA, and the thread is used to receive updates from the queue master about the state of jobs and the system in general. Once
 has been called successfully, the calling application must also call before terminating. If an application doesdrmaa_init() drmaa_exit()

not call before terminating, the queue master might be left with a dead event client handle, which can decrease queue masterdrmaa_exit()

performance.

At the end of the program, on line 17, cleans up the session and stops the event client listener thread. Most other DRMAAdrmaa_exit()

functions must be called before . Some functions, like , can be called after , butdrmaa_exit() drmaa_get_contact() drmaa_exit()

these functions only provide general information. Any function that performs an action, such as or mustdrmaa_run_job() drmaa_wait()

be called before is called. If such a function is called after is called, it will return the error code drmaa_exit() drmaa_exit()

.DRMAA_ERRNO_NO_ACTIVE_SESSION

01: #include
02: #include "drmaa.h"
03:
04: main(argc, **argv) {int int char
05: error[DRMAA_ERROR_STRING_BUFFER];char
06: errnum = 0;int
07:
08: errnum = drmaa_init(NULL, error, DRMAA_ERROR_STRING_BUFFER);
09:
10: (errnum != DRMAA_ERRNO_SUCCESS) {if
11: fprintf(stderr, , error);"Could not initialize the DRMAA library: %s\n"
12: 1;return
13: }
14:
15: printf();"DRMAA library was started successfully\n"
16:
17: errnum = drmaa_exit(error, DRMAA_ERROR_STRING_BUFFER);
18:
19: (errnum != DRMAA_ERRNO_SUCCESS) {if
20: fprintf(stderr, , error);"Could not shut down the DRMAA library: %s\n"
21: 1;return
22: }
23:
24: 0;return
25: }

Example - Running a Job

The following code segment shows how to use the DRMAA C binding to submit a job to Sun Grid Engine. The beginning and end of this
program are the same as in the preceding example. The differences are on lines 16 through 59. On line 16, DRMAA allocates a job template. A
job template is a structure used to store information about a job to be submitted. The same template can be reused for multiple calls to

 or .drmaa_run_job() drmaa_run_bulk_job()

On line 22, the attribute is set. This attribute tells DRMAA where to find the program to run. Its value is the path toDRMAA_REMOTE_COMMAND

the executable. The path can be relative or absolute. If relative, the path is relative to the attribute, which defaults to the user'sDRMAA_WD

home directory. For this program to work, the script must be in your default path.sleeper.sh

http://gridengine.sunsource.net/howto/howto.html
http://gridengine.sunsource.net/howto/howto.html

On line 32, the attribute is set. This attribute tells DRMAA what arguments to pass to the executable. For more information onDRMAA_V_ARGV

DRMAA attributes, see the man page.(3)drmaa_attributes

On line 43 , submits the job. DRMAA places the id assigned to the job into the character array that is passed to drmaa_run_job()

. The job is now running as though submitted by . At this point, calling or terminating the programdrmaa_run_job() qsub drmaa_exit()

will have no effect on the job.

To clean things up, the job template is deleted on line 54. This frees the memory DRMAA set aside for the job template, but has no effect on
submitted jobs.

Finally, on line 61, is called. The call is outside of the structure started on line 18 because when drmaa_exit() drmaa_exit() if
 is called, must be called before terminating, regardless of successive commands.drmaa_init() drmaa_exit()

http://gridengine.sunsource.net/manpages.html

01: #include
02: #include "drmaa.h"
03:
04: main(argc, **argv) {int int char
05: error[DRMAA_ERROR_STRING_BUFFER];char
06: errnum = 0;int
07: drmaa_job_template_t *jt = NULL;
08:
09: errnum = drmaa_init(NULL, error, DRMAA_ERROR_STRING_BUFFER);
10:
11: (errnum != DRMAA_ERRNO_SUCCESS) {if
12: fprintf(stderr, , error);"Could not initialize the DRMAA library: %s\n"
13: 1;return
14: }
15:
16: errnum = drmaa_allocate_job_template(&jt, error, DRMAA_ERROR_STRING_BUFFER);
17:
18: (errnum != DRMAA_ERRNO_SUCCESS) {if
19: fprintf(stderr, , error);"Could not create job template: %s\n"
20: }
21: {else
22: errnum = drmaa_set_attribute(jt, DRMAA_REMOTE_COMMAND, ,"sleeper.sh"
23: error, DRMAA_ERROR_STRING_BUFFER);
24:
25: (errnum != DRMAA_ERRNO_SUCCESS) {if
26: fprintf(stderr, %s\ ,"Could not set attribute \" ": %s\n"
27: DRMAA_REMOTE_COMMAND, error);
28: }
29: {else
30: *args[2] = { , NULL};const char "5"
31:
32: errnum = drmaa_set_vector_attribute(jt, DRMAA_V_ARGV, args, error,
33: DRMAA_ERROR_STRING_BUFFER);
34: }
35:
36: (errnum != DRMAA_ERRNO_SUCCESS) {if
37: fprintf(stderr, %s\ ,"Could not set attribute \" ": %s\n"
38: DRMAA_REMOTE_COMMAND, error);
39: }
40: {else
41: jobid[DRMAA_JOBNAME_BUFFER];char
42:
43: errnum = drmaa_run_job(jobid, DRMAA_JOBNAME_BUFFER, jt, error,
44: DRMAA_ERROR_STRING_BUFFER);
45:
46: (errnum != DRMAA_ERRNO_SUCCESS) {if
47: fprintf(stderr, , error);"Could not submit job: %s\n"
48: }
49: {else
50: printf(, jobid);"Your job has been submitted with id %s\n"
51: }
52: } /* */else
53:
54: errnum = drmaa_delete_job_template(jt, error, DRMAA_ERROR_STRING_BUFFER);
55:
56: (errnum != DRMAA_ERRNO_SUCCESS) {if
57: fprintf(stderr, , error);"Could not delete job template: %s\n"
58: }
59: } /* */else
60:
61: errnum = drmaa_exit(error, DRMAA_ERROR_STRING_BUFFER);
62:
63: (errnum != DRMAA_ERRNO_SUCCESS) {if
64: fprintf(stderr, , error);"Could not shut down the DRMAA library: %s\n"
65: 1;return
66: }
67:
68: 0;return
69: }

1.

2.

a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.

a.
b.
c.
d.

3.

4.

 Developing With the Java Language Binding

Important Files for the Java Language Binding

To use the DRMAA Java language binding implementation included with Sun Grid Engine, you need to know where to find the important files.
The most important file is the DRMAA JAR file . To compile your DRMAA application, you must include the$SGE_ROOT/lib/drmaa.jar

DRMAA JAR file in your . The DRMAA classes are documented in the DRMAA Javadoc, located in the CLASSPATH $SGE_ROOT/doc/javadocs

directory. To access the Javadocs, open the file in your browser. When you are ready to run your$SGE_ROOT/doc/javadocs/index.html

application, you also need the DRMAA shared library, , which provides the required native$SGE_ROOT/lib/$SGE_ARCH/libdrmaa.so

routines.

Importing the DRMAA Java Classes and Packages

To use the DRMAA classes in your application, your classes should import the DRMAA classes or packages. In most cases, only the classes in the
 package will be used. You can import these packages individually or using a wildcard package import. In some rare cases, youorg.ggf.drmaa

might need to reference the Sun Grid Engine DRMAA implementation classes found in the package. In those cases,com.sun.grid.drmaa

you can import the classes individually or you can import all the classes in a given package. The names of the classescom.sun.grid.drmaa

do not overlap with the classes, so you can import both packages without creating a namespace collision.org.ggf.drmaa

Compiling Your Java Application

To compile your DRMAA application, you must include the file in your . The file will $SGE_ROOT/lib/drmaa.jar CLASSPATH drmaa.jar

 be included automatically when you set your environment using the or files.not settings.sh settings.csh

How to Use DRMAA With NetBeans 5.x

To use the DRMAA classes with your NetBeans 5.0 or 5.5 project, follow these steps:

Click mouse button 3 on the project node and select .Properties

Determine whether your project generates a build file or uses an existing file.
If your project uses a :generated build file

Select in the left column.Libraries

Click .Add Library

Click in the Libraries dialog box.Manage Libraries

Click in the Library Management dialog box.New Library

Type in the Library Name field in the New Library dialog box.DRMAA

Click to dismiss the New Library dialog box.OK

Click .Add JAR/Folder

Browse to the directory in the file chooser dialog box and select the file.$SGE_ROOT/lib drmaa.jar

Click to dismiss the file chooser dialog box.Add JAR/Folder

Click to dismiss the Library Management dialog box.OK

Select the DRMAA library and click to dismiss the Libraries dialog box.Add Library

If your project uses an :existing build file
Select in the left column.Java Sources Classpath

Click .Add JAR/Folder

Browse to the directory in the file chooser dialog box and select the file.$SGE_ROOT/lib drmaa.jar

Click to dismiss the file chooser dialog box. Choose

Click to dismiss the properties dialog box.OK

Verify that the DRMAA shared library is in the library search path.
To run your application from NetBeans, the DRMAA shared library file must be$SGE_ROOT/lib/$SGE_ARCH/libdrmaa.so

included in the library search path (on the Solaris Operating Environment and Linux). The LD_LIBRARY_PATH

 directory is included automatically when you set your environment using the or $SGE_ROOT/lib/$SGE_ARCH not settings.sh

 files. To set up the path for the shared library, perform one of the following:settings.csh

Set up your environment in the shell before launching NetBeans.
Add to the file to set up the environment, such as:netbeans-root/etc/netbeans.conf

4.

Setup environment SGEfor
. $SGE_ROOT/$SGE_CELL/common/settings.sh
SGE_ARCH=`$SGE_ROOT/util/arch`
LD_LIBRARY_PATH=$SGE_ROOT/lib/$SGE_ARCH; export LD_LIBRARY_PATH

Running Your Java Application

To run your compiled DRMAA application, verify the following:

The directory must be included in the library search path (on the Solaris$SGE_ROOT/lib/$SGE_ARCH LD_LIBRARY_PATH

Operating Environment and Linux). The directory is included automatically when you set your$SGE_ROOT/lib/$SGE_ARCH not
environment using the or files.settings.sh settings.csh

You must be logged into a machine that is a Sun Grid Engine submit host. If the machine is not a Sun Grid Engine submit host, all
DRMAA method calls will fail, throwing a .DrmCommunicationException

Java Application Examples

The following examples illustrate some application interactions that use the Java language bindings. You can find additional examples on the
."How To" section of the Grid Engine Community Site

Example - Starting and Stopping a Session

The following code segment shows the most basic DRMAA Java language binding program.

You must have a object to do anything with DRMAA. You get the object from a . You get the Session Session SessionFactory

 from the static method. The reason for this chain is that the org.ggf.drmaa.* classesSessionFactory SessionFactory.getFactory()

should be considered an immutable package to be used by every DRMAA Java language binding implementation. Because the package is
immutable, to load a specific implementation, the uses a system property to find the implementation's session factory,SessionFactory

which it then loads. That session factory is then responsible for creating the session in whatever way it sees fit. It should be noted that even
though there is a session factory, only one session may exist at a time.

On line 9, gets a session factory instance. On line 10, gets theSessionFactory.getFactory() SessionFactory.getSession()

session instance. On line 13, initializes the session. is passed in as the contact string to create a new session because noSession.init() ""

initialization arguments are needed.

Session.init() creates a session and starts an event client listener thread. The session is used for organizing jobs submitted through
DRMAA, and the thread is used to receive updates from the queue master about the state of jobs and the system in general. Once

 has been called successfully, the calling application must also call before terminating. If an applicationSession.init() Session.exit()

does not call before terminating, the queue master might be left with a dead event client handle, which can decrease queueSession.exit()

master performance. Use the method to make sure gets called.Runtime.addShutdownHook() Session.exit()

At the end of the program, on line 14, cleans up the session and stops the event client listener thread. Most other DRMAASession.exit()

methods must be called before . Some functions, like , can be called after ,Session.exit() Session.getContact() Session.exit()

but these functions only provide general information. Any function that performs an action, such as or Session.runJob()

 must be called before is called. If such a function is called after is called, it willSession.wait() Session.exit() Session.exit()

throw a .NoActiveSessionException

http://gridengine.sunsource.net/howto/howto.html

01: com.sun.grid.drmaa.howto;package
02:
03: org.ggf.drmaa.DrmaaException;import
04: org.ggf.drmaa.Session;import
05: org.ggf.drmaa.SessionFactory;import
06:
07: class Howto1 {public
08: void main([] args) {public static String
09: SessionFactory factory = SessionFactory.getFactory();
10: Session session = factory.getSession();
11:
12: {try
13: session.init("");
14: session.exit();
15: } (DrmaaException e) {catch
16: .out.println(+ e.getMessage());System "Error: "
17: }
18: }
19: }

Example - Running a Job

The following code segment shows how to use the DRMAA Java language binding to submit a job to Sun Grid Engine. The beginning and end of
this program are the same as in the preceding example. The differences are on lines 16 through 24.

On line 16 , DRMAA allocates a . A is an object that is used to store information about a job to be submitted. TheJobTemplate JobTemplate

same template can be reused for multiple calls to or .Session.runJob() Session.runBulkJobs()

On line 17, the attribute is set. This attribute tells DRMAA where to find the program to run. Its value is the path to theRemoteCommand

executable. The path can be relative or absolute. If relative, the path is relative to the attribute, which defaults to theWorkingDirectory

user's home directory. For more information on DRMAA attributes, see the DRMAA Javadoc or the man page. For this(3)drmaa_attributes

program to work, the script must be in your default path.sleeper.sh

On line 18, the attribute is set. This attribute tells DRMAA what arguments to pass to the executable. For more information on DRMAAargs

attributes, see the DRMAA Javadoc or the man page.(3)drmaa_attributes

On line 20, submits the job. This method returns the ID assigned to the job by the queue master. The job is now runningSession.runJob()

as though submitted by . At this point, calling or terminating the program will have no effect on the job.qsub Session.exit()

To clean things up, the job template is deleted on line 24. This action frees the memory DRMAA set aside for the job template, but has no effect
on submitted jobs.

http://gridengine.sunsource.net/manpages.html
http://gridengine.sunsource.net/manpages.html

01: com.sun.grid.drmaa.howto;package
02:
03: java.util.Collections;import
04: org.ggf.drmaa.DrmaaException;import
05: org.ggf.drmaa.JobTemplate;import
06: org.ggf.drmaa.Session;import
07: org.ggf.drmaa.SessionFactory;import
08:
09: class Howto2 {public
10: void main([] args) {public static String
11: SessionFactory factory = SessionFactory.getFactory();
12: Session session = factory.getSession();
13:
14: {try
15: session.init("");
16: JobTemplate jt = session.createJobTemplate();
17: jt.setRemoteCommand();"sleeper.sh"
18: jt.setArgs(Collections.singletonList());"5"
19:
20: id = session.runJob(jt);String
21:
22: .out.println(+ id);System "Your job has been submitted with id "
23:
24: session.deleteJobTemplate(jt);
25: session.exit();
26: } (DrmaaException e) {catch
27: .out.println(+ e.getMessage());System "Error: "
28: }
29: }
30: }

